实变函数论5-积分论2-“非负简单函数”的勒贝格积分2:勒贝格积分(L积分)【φ(x)在E上的勒贝格积分:∫ᴱφ(x)dx=∑cᵢmEᵢ】【∫ᴰD(x)dx=1×mQ+0×mQᶜ=1×0+0×∞=0】

定义(非负简单函数)

E ⊂ R n E \subset \mathbf { R } ^ { n } ERn 为可测集, φ ( x ) \varphi ( x ) φ(x) E E E 上的一个非负简单函数,即 E E E 表示为有限个互 不相交的可测集 E 1 , E 2 , ⋯   , E k E _ { 1 } , E _ { 2 } , \cdots , E _ { k } E1,E2,,Ek之并,而在每个 E i E _ { i } Ei φ ( x ) \varphi ( x ) φ(x) 取非负常数值 c i , c _ { i } , ci,也就是说

φ ( x ) = ∑ i = 1 k c i χ E i ( x ) . \varphi ( x ) = \sum _ { i = 1 } ^ { k } c _ { i } \chi_ {E_ { i } } ( x ) . φ(x)=i=1kciχEi(x).

这里 χ E i ( x ) \chi _ { E _ { i } } ( x ) χEi(x) E i E _ { i } Ei特征函数


定义(勒贝格积分)

φ ( x ) \varphi ( x ) φ(x) E E E 上的勒贝格积分(简称 L L L积分,不产生误解时就称为积分),定义为

∫ E φ ( x ) d x = ∑ i = 1 k c i m E i . \int _ { E } \varphi ( x ) \mathrm { d } x = \sum _ { i = 1 } ^ { k } c _ { i } m E _ { i } . Eφ(x)dx=i=1kcimEi.

其中:

  • c i c_i ci 表示 E i E_i Ei 的值;
  • m E i mE_i mEi 表示 E i E_i Ei的测度;

A ⊂ E A \subset E AE 为可测子集, φ ( x ) \varphi ( x ) φ(x) A A A 上的勒贝格积分定义为 φ \varphi φ A A A 上 的限制 φ ∣ A \left. \varphi \right| _ { A } φA A A A上的勒贝格积分,于是

∫ A φ ( x ) d x = ∑ i = 1 k c i m ( A ∩ E i ) . \int _ { A } \varphi ( x ) \mathrm { d } x = \sum _ { i = 1 } ^ { k } c _ { i } m \left( A \cap E _ { i } \right) . Aφ(x)dx=i=1kcim(AEi).


设全体有理数所成之集记为 Q , R \mathbf { Q } , \mathbf { R } Q,R上的狄利克雷函数定义为

D ( x ) = { 1 , 若 x ∈ Q , 0 , 若 x ∈ Q c , D ( x ) = \left\{ \begin{array} { l l } 1 , & 若 x \in \mathbf { Q } , \\ 0 , & 若 x \in \mathbf { Q } ^ { c } , \end{array} \right. D(x)={1,0,xQ,xQc,

∫ R D ( x ) d x = 1 ⋅ m Q + 0 ⋅ m Q c = 1 ⋅ 0 + 0 ⋅ ∞ = 0. \int _ { \mathrm { R } } D ( x ) \mathrm { d } x = 1 \cdot m \mathrm { Q } + 0 \cdot m \mathrm { Q } ^ { c } = 1 \cdot 0 + 0 \cdot \infty = 0 . RD(x)dx=1mQ+0mQc=10+0=0.
在这里插入图片描述

  • 8
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值