基于深度学习的图像去噪方法归纳总结

目录

图像去噪概述:

(1)数据预处理

(2)特征提取

(3)去噪模型设计和选择

基于深度学习的图像去噪方法

基于卷积神经网络的去噪方法

基于CNN自监督学习去噪

基于CNN监督学习去噪

基于残差网络的去噪方法

CNN中图像网络分为

基于生成对抗网络的去噪方法

GAN

基于图神经网络的去噪方法(GCDN)

GNN

GCN

GCDN


图像去噪概述:

图像去噪的研究内容包括数据预处理、特征提取和去噪三部分

(1)数据预处理

    1. 问题:获取的数据集中常包含一些不可用数据,如图像格式不符,像素过高、亮度过低以及一些重复数据
    2. 方法:采用图像格式转换、几何校正、主成分分析等预处理操作为后续的去噪模型提供更多可用数据

(2)特征提取

    1. 目的

提取图像纹理细节特征(通过卷积池化等方式),并将噪声与背景信息分离

      1. 卷积
        1. 提取图像特征,自动提取图像的高维度且有效的特征
        2. 卷积层工作原理:从左上角开始,卷积核就对应着数据的3*3的矩阵范围,然后相乘再相加得出一个值。按照这种顺序,每隔一个像素就操作一次,我们就可以得出9个值。这九个值形成的矩阵被我们称作激活映射
        3. 举例:卷积核为3*3的矩阵,图片为一个分辨率5*5的图片,像素为1,卷积核的任务如下图

        1. 分类:padding,步长
      • 池化
        1. 主要是为了减少卷积层提取的特征个数,增加特征的鲁棒性或是为了降维
        2. 目的是降低参数,方法是删除参数,分为最大池化(常用)和平均池化
        3. 池化层池化的是卷积层的输出(池化层一般放在卷积层后面)

    1. 方法
      1. 有尺度不变特征变换(SIFT):提取不变性(invariant)特征
      2. 方向梯度直方图(HOG):将3通道的彩色图像转换成一定长度的特征向量
      3. FAST 角点检测:快速角点特征的检测算法
    2. 提取后的目的:提取到的噪声块儿,可以对噪声水平的高低做出初步估计
    3. 原因:精准的噪声水平估计是设计合理去噪网络结构的前提
    4. 方法:递归平均、最小值跟踪和直方图噪声估计

(3)去噪模型设计和选择

    1. 基于深度学习的图像去噪方法可以自主快速地提取浅层像素级特征和深层语义级特征,具有强大的表示学习能力和良好的去噪效果
    2. 基于传统模型的去噪方法提取的信息量较少,无法准确拟合噪声分布,去噪效果不甚理想

基于深度学习的图像去噪方法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值