【论文解读】Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices

摘要

  1. 研究背景:在实际应用中,高效且轻量级的图像超分辨率技术非常受欢迎。尽管许多现有研究致力于减少模型参数和浮点运算次数(FLOPs),但这并不一定能提高在移动设备上的运行速度。
  2. 提出的技术:作者提出了一种可重参数化的构建模块,名为边缘导向卷积块(Edge-oriented Convolution Block, ECB)。在训练阶段,ECB通过多条路径提取特征,包括常规的3x3卷积、通道扩展和压缩卷积,以及从中间特征中提取的一阶和二阶空间导数。在推理阶段,这些操作可以合并为一个单一的3x3卷积。
  3. ECB的优势:ECB可以被视为常规3x3卷积的直接替代品
explicit spectral-to-spatial convolution for pansharpening是一种用于全色融合的显式光谱到空间卷积方法。全色融合是将高辨率的全色(黑白)图像与低辨率的多光谱(彩色)图像融合,以提高图像质量和细节。传统的融合方法常常使用高通滤波器进行频域操作,而explicit spectral-to-spatial convolution for pansharpening则使用基于卷积的空间域方法。 该方法基于以下原理:在全色图像中,光谱辨率高,但空间辨率较低;而在多光谱图像中,光谱辨率较低,但空间辨率较高。因此,通过将全色图像的光谱信息传递给多光谱图像,可以提高多光谱图像的空间辨率。 explicit spectral-to-spatial convolution for pansharpening方法通过使用卷积核,将全色图像的光谱信息转换为空间域的高频细节。这个卷积核是根据光谱和空间信息之间的关系而设计的。通过将这个卷积核应用于低辨率的多光谱图像,可以增强其空间细节,使其接近高辨率的全色图像。 这种方法的优势在于显式地将光谱信息转换为空间域的细节,能够更好地保留图像的光谱特征和空间细节。与传统的频域方法相比,显式光谱到空间卷积方法更容易实现,并且能够更好地适应各种图像场景。 总之,explicit spectral-to-spatial convolution for pansharpening是一种通过卷积将全色图像的光谱信息转换为多光谱图像的空间细节的方法,以实现全色融合,提高图像质量和细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码流怪侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值