- 级别:CCF A
- 时间:2021
- 机构:阿里巴巴、香港理工大学
- 作者:Xindong Zhang、Lei Zhang等
- 原文链接:https://www4.comp.polyu.edu.hk/~cslzhang/paper/MM21_ECBSR.pdf
摘要
- 研究背景:在实际应用中,高效且轻量级的图像超分辨率技术非常受欢迎。尽管许多现有研究致力于减少模型参数和浮点运算次数(FLOPs),但这并不一定能提高在移动设备上的运行速度。
- 提出的技术:作者提出了一种可重参数化的构建模块,名为边缘导向卷积块(Edge-oriented Convolution Block, ECB)。在训练阶段,ECB通过多条路径提取特征,包括常规的3x3卷积、通道扩展和压缩卷积,以及从中间特征中提取的一阶和二阶空间导数。在推理阶段,这些操作可以合并为一个单一的3x3卷积。
- ECB的优势:ECB可以被视为常规3x3卷积的直接替代品