Matlab入门(二):Matlab中最基本的向量与矩阵运算

这篇博客介绍了Matlab中向量和矩阵的基本及复杂运算,包括向量的定义、转置、加减、幂方、点积、叉积等,矩阵的建立、转置、乘法以及线性代数问题的解决,如行列式、秩、逆矩阵的计算,并给出了注意事项和解线性方程组的方法。
摘要由CSDN通过智能技术生成

因课题需要,根据书籍初步自学matlab,结合刷教程书的一点心得,做一个简单记录,方便自己能形成一个输入输出循坏,加深理解和记忆。

参考书籍:Matlab揭秘,David McMahon著,郑碧波译.

二、Matlab中最基本的向量与矩阵运算知识

1、对向量的操作
1)向量的基本运算:
  • 定义一个向量
创建一个列向量,元素与元素之间用分号(;)隔开,如 a = [2; 1; 4];
创建一个行向量,元素与元素之间用空格(space)或者逗号(,)隔开,如 b = [3, 1, 5];
  • 向量的转置、共轭转置
向量转置可以使用(')来完成,如 b = a';
当向量元素中涉及到复数时,转置运算会自动完成共轭转置。
如果只想转置而不进行共轭处理,可以使用(.'),如 b = a.';
  • 向量的加减运算、数乘法运算
Matlab中向量的加减运算只用参与运算的向量同型即可,数乘法的运算规则和线性代数中一致。
  • 向量的幂方运算
在Matlab中向量的乘方必须在幂运算符( ^)前面加上句号(.),
只有这样才是对向量每一个元素进行幂运算,否则将报错。如 y = x .^2;
  • 向量的点积与叉积(数量积与向量积)
向量的点积要通过点乘运算(.*)来完成,否则无法满足点积的定义。
同时,点积运算也可以使用dot(a, b)命令来完成。
向量的叉积则要求两个向量必须是三维的,然后使用cross命令来实现,如 c = cross(a, b);
  • 向量的模(两种求解方法)
一是根据点积定义长度来求解,即一个向量的模的平方就等于它与自身做点积,如 a = sqrt(a .* a)。
同时要注意的是,对于复数向量的模,我们必须先求解向量的共轭向量。
如果是直接用转置符号求共轭转置,将会出错,这里应该严格使用conj命令求解共轭向量,然后再用它们做点积。
二是使用dot(a, b)来求点积,然后开根号,这样即使是复数向量,也不会出错。(推荐使用,简单明了)
2)向量的复杂运算:
  • 由小向量合并得到大向量:
Matlab中提供了一种操作,可以允许我们把向量合并在一起创建新向量。
两个列向量合并为一个列向量,两个行向量合并为一个行向量。
如 a = [1; 4; 5]; b = [2; 3; 4]; c = [a; b]; 或m = [1, 2, 3]; n = [2, -1, 3]; k = [m, n];
  • 创建等差元素向量
根据问题需要,我们可以创建元素间距相等的向量,语法为:x = [x0 : q : xn]; 
如 x = [0 : 2 : 10] = 0  2  4  6  8  10
  • 特征化向量(一些便捷
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值