超分 Super-Resolution

45 篇文章 55 订阅 ¥19.90 ¥99.00
本文介绍了图像超分辨率的基本概念,包括数据获取、不同的上采样方式和损失函数。重点讨论了深度学习在超分辨率领域的应用,如SRCNN、RCAN和RFANet等模型,以及它们在实际问题中的挑战和应用,如行人重识别任务中的超分辨技术。此外,还提供了相关论文和代码资源链接。
摘要由CSDN通过智能技术生成

1、入门

定义:超分即把一个低分辨率低图片恢复为高分辨率低图像

数据来源:把高分辨率的图片通过人工加噪声等方式变成低分辨率。如,matlab bicubic resize下采样(最常用的方式)、高斯模糊、先下采样再上采样,其他unknown 降质方法。

数据例子:https://data.vision.ee.ethz.ch/cvl/DIV2K/

卷积种类:

  • 先上采样再恢复
  • 先恢复再上采样
  • 渐进式等上采样
  • 循环式等上采样和下采样

损失函数:一般分为多种损失函数,使用不同等损失函数叠加。

  • 基于像素的Pixel Loss 如L2\L1
  • 基于内容的Content loss,如利用一个训练好的分类网络,对模型输出的图片和标注图像分别做分类,求loss
  • 基于纹理的Texture Loss, 如利用一个训练好的分类网络,对模型输出的图片和标注图像分别提取特征求相似矩阵,再求loss
  • 基于对抗性的Adversarial Loss,gan生成的图片psnr不好,但是整体质量很好

评价指标(和IQA一致)&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yang_daxia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值