炼丹技巧总结

45 篇文章 55 订阅 ¥19.90 ¥99.00
45 篇文章 4 订阅 ¥19.90 ¥99.00

1、调参

主要调节学习率、不同的loss的权重,可以手动调节,或者采用HPO

2、训练epoch加长

一般训的时间越长,结果更好。尽量加到模型的上界为止。

3、loss

尝试其他的loss、可能会有涨点

4、pretrain

一般更好的pretrain模型的表征能力好,可以训练更好的结果。如使用imagenet、coco等公开数据集pretrain

5、蒸馏

通过大模型蒸馏小模型等方式,提升小模型的能力

6、调整模型结构

可以在原始基础上修改,分析模型的算力分布,调整算力,尝试不同结构

7、backbone

更好的backbone也许可以更好

8、nas

对某任务搜索模型结构

9、数据

增加同类的数据、清洗脏数据

10、分析badcase

通过badcase定位问题,找错错误最多的case

11、optimizer

sgd、sgd_agc、adam等方法尝试

12、部署友好技巧(不改变模型容量)

ACNet中的ACBlock
参考:https://zhuanlan.zhihu.com/p/131282789
其他的如蒸馏、半监督等、loss

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yang_daxia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值