频 域

  时域是信号在时间轴随时间变化的总体概括。
频域是把时域波形的表达式做傅立叶变化得到复频域的表达式,所画出的波形就是频谱图。是描述频率变化和幅度变化的关系.

  比如说众所周知的正弦信号,在频域的表现就是一条竖线。
更复杂的信号在频域会有更复杂的表现,比如出现倍频边频等.

时域(时间域)——自变量是时间,即横轴是时间,纵轴是信号的变化。其动态信号x(t)是描述信号在不同时刻取值的函数。  
频域(频率域)——自变量是频率,即横轴是频率,纵轴是该频率信号的幅度,也就是通常说的频谱图。频谱图描述了信号的频率结构及频率与该频率信号幅度的关系。  
对信号进行时域分析时,有时一些信号的时域参数相同,但并不能说明信号就完全相同。因为信号不仅随时间变化,还与频率、相位等信息有关,这就需要进一步分析信号的频率结构,并在频率域中对信号进行描述。   

          先说物理意义。一个函数(一般指随时间变化的函数,因此称它的定义域为时域,后来这个定义扩展到任意类型的实域),它可以表述为一系列正弦波的叠加,也就是对于函数f(t),可以表示为
           f(t)= sum(An(w)sin(nwt) + Bn(w)cos(nwt))
一个周期可积函数总可以找到对应的唯一的An(w)和Bn(w)来表达它。
我们称呼f(t)为函数在时域内的响应,An(w)和Bn(w)为它在频率内的响应。 这个响应的函数是:对于一个系统的输入,如果我们输入不同频率的波,这个系统随频率的不同的变化情况
上面是数学上的意义,对于实际应用中,频率反应了原始信息的波动情况。原始信息波动越厉害,它的高频组成就越多。例如:一个图像的图形边界处变化剧烈,因此对应高频部分.
一般情况下,噪声是高频信号,如果我们让普通的带噪声信号通过一个只让低频通过的系统,噪声的能量就大大降低,达到降噪的目的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值