pytorch DataParallel理解及易犯错误(逻辑上感觉没问题,但是返回时候却出错)

本文只针对单机多GPU使用dataparallel进行加速运算。

写在前边: dataparallel只存在于继承了nn.Modules类的forward()计算中。
大致流程如下:

import torch

model = Net() #初始化模型
for i, (input_datas, label_datas) in enumerate(data_loader):
	#step 1: 数据放到GPU上
	input_datas = input_datas.
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值