本文只针对单机多GPU使用dataparallel进行加速运算。
写在前边: dataparallel只存在于继承了nn.Modules类的forward()计算中。
大致流程如下:
import torch
model = Net() #初始化模型
for i, (input_datas, label_datas) in enumerate(data_loader):
#step 1: 数据放到GPU上
input_datas = input_datas.
本文只针对单机多GPU使用dataparallel进行加速运算。
写在前边: dataparallel只存在于继承了nn.Modules类的forward()计算中。
大致流程如下:
import torch
model = Net() #初始化模型
for i, (input_datas, label_datas) in enumerate(data_loader):
#step 1: 数据放到GPU上
input_datas = input_datas.