【FM-RS】FM-based Recommendation Model:FM、FFM

本文深入探讨了FM(Factorization Machines)模型,包括其动机、实际应用场景、模型原理和复杂度优化。FM通过引入隐向量解决矩阵分解在特征交叉上的局限,同时减少了参数数量。FFM(Field FM)在此基础上引入场概念,每个特征对应多个隐向量,提高了模型的表达能力。FFM的二次项系数通过与特征field相关的隐向量点积得到,预测复杂度为O(kn2)。
摘要由CSDN通过智能技术生成

FM(Factorization Machines) ICDM’10

动机一:矩阵分解是一个很好的方法,但是我们似乎只能利用用户物品评分这一个信息,用户和物品辅助特征都不能利用起来。FM就就可以解决这个问题,把所有特征都用一个向量表示(latent factor)。不由得让人想起“万物皆可embedding”。

动机二:稀疏场景下,叉乘特征导致参数量爆炸,并且无法学习。这个是原论文里的动机。

真实场景例子

论文举了一个电影评分的例子,先来观察一下7个样本的矩阵:

image-20210512011804532

很明显上图的左边一大块是特征,右边的Target y表示的预测结果,也就是用户可能对电影做出的评价。这里一共有[1, 2, 3, 4, 5]这5种可能,也就是说这是一个多分类的问题。

接着我们再来看特征,特征一共也有5个部分,其中蓝色的部分表示的用户的one-hot。那么这个数组的长度应该是用户的数量,只有代表当前用户的那一维为1,其他均为0。

红色部分表示电影,同样是电影的one-hot,和用户的one-hot是一样的逻辑。代表当前电影的那一维度为1,其他为0。

之后是黄色的部分,表示的之前用户对于电影的评分行为,维度同样是电影的数量。凡是用户评分过的电影分数大于0,没有评分的等于0。得分的计算逻辑是1除以用户评论过的电影数量。比如第一行当中,第一个用户评价过前三部电影,所以前三部电影每一部分到了的 1 3 \frac{1}{3} 31分数。

绿色的部分只有1维,表示的是用户评论电影的时间。计算方法是将记录当中最早的日期作为基数(这里是2009年1月),之后每过一个月,增加1。比如2009年5就可以折算成5。

最后棕色的部分表示的是用户最近一次评论的电影,这同样是一个one-hot的数组,它的维度和电影的数量是一致的。

我们假设用户的数量是U,电影的数量是M,那么最后得到的整个特征的维度数应该是U+3M+1。即使是小众一些的电影评分网站,用户数也至少是以上百万起的,再加上电影的数量,这显然是一个非常庞大的数字。而在这么庞大的维度当中只有少数的一些维度是有值的,其余均为0。

FM模型原理

在我们介绍FM模型的方程之前,先来回顾一下线性回归的表达式:
Y = W T X = w 0 + ∑ i = 1 n w i x i Y=W^{T} X=w_{0}+\sum_{i=1}^{n} w_{i} x_{i} Y=WTX=w0+i=1nwixi
也就是说 W = ( w 0 , w 1 , w 2 , ⋯   , w n ) W=\left(w_{0}, w_{1}, w_{2}, \cdots, w_{n}\right) W=(w0,w1,w2,,wn) W W W是这样一个 n + 1 n+1 n+1维的向量, X X X是一个 n × m n \times m n×m的特征矩阵。这里的 n n n是特征的维数, m m m是样本的数量。所以我们也经常把它写成 Y = W X Y = WX Y=WX

线性回归只利用特征的一次项,缺点在于线性模型中假设不同特征之间是独立的,即特征 x i 、 x j ( i ≠ j ) ) x_i、x_j(i≠j)) xixj(i=j)) 不会相互影响。为了解决简单线性模型无法学得特征间交叉影响的问题,做特征的时候经常叉乘特征:会把两项特征组合起来做成新的组合特征,这样也引入了非线性的能力:
y ^ = w 0 + ∑ i = 1 n w i x i + ∑ i = 1 n − 1 ∑ j = i + 1 n w i j x i x j = w 0 + w 1 T x + x T W 2 x \hat{y}=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} w_{i j} x_{i} x_{j}\\ =w_{0}+\mathbf{w}_{\mathbf{1}}^{T} \mathbf{x}+\mathbf{x}^{T} \mathbf{W}_{\mathbf{2}} \mathbf{x} y^=w0+i=1nwixi+i=1n1j=i+1nwijxixj=w0+w1Tx+xTW2x
这里 x i x_i xi x j x_j xj分别代表两个不同的特征值,对于 n n n维的特征来说这样的组合应该有 C n 2 = n ( n − 1 ) 2 C_{n}^{2} = \frac{n(n-1)}{2}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值