https://arxiv.org/pdf/1912.03263v3.pdf
常用的分类器模型都是在建模 p θ ( y ∣ x ) p_{\theta}(y \mid \mathbf{x}) pθ(y∣x),这篇文章从能量的视角解释分类模型,进而得到一个生成模型和分类模型的混合模型。该模型能够同时建模 p θ ( y ∣ x ) p_{\theta}(y \mid \mathbf{x}) pθ(y∣x)和 p θ ( x ) p_{\theta}(\mathbf{x}) pθ(x),从而提高分类精度和样本生成质量。
这篇文章也被用作OOD检测的baseline。
Joint Energy-based Model(JEM)
先来overview一下模型结构:

一个神经网络分类模型输入到Softmax函数的值称之为 f θ ( x ) f_{\theta}(x) fθ(x),传统的分类器模型用 f θ ( x ) f_{\theta}(x) fθ(x)输入到softmax函数中估计 p ( y ∣ x ) p(y \mid \mathbf{x}) p(y∣x),这篇文章里同时还用 f θ ( x ) f_{\theta}(x) fθ(x)来估计 p ( x , y ) p( \mathbf{x},y) p(x,y)和 p ( x ) p(\mathbf{x}) p(x)。
本文的方法
EBM
Energy-based model:
p θ ( x ) = exp ( − E θ ( x ) ) Z ( θ ) (1) p_{\theta}(\mathrm{x})=\frac{\exp \left(-E_{\theta}(\mathrm{x})\right)}{Z(\theta)} \tag{1} pθ(x)=Z(θ)exp(−Eθ(x))(1)
其中 E θ ( x ) : R D → R E_{\theta}(\mathrm{x}): \mathbb{R}^{D} \rightarrow \mathbb{R} Eθ(x):RD→R是能量函数, Z ( θ ) = ∫ x exp ( − E θ ( x ) ) Z(\theta)=\int_{\mathbf{x}} \exp \left(-E_{\theta}(\mathbf{x})\right) Z(θ)=∫xexp(−