【分布外检测】《YOUR CLASSIFIER IS SECRETLY AN ENERGY BASED MODEL AND YOU SHOULD TREAT IT LIKE ONE》 ICLR‘20

本文探讨了将分类器视为能量基模型(EBM),提出Joint Energy-based Model(JEM),结合生成和分类模型,用于提高分类精度和异常检测。通过优化对数似然和SGLD采样,JEM能够进行样本生成和异常检测,并展现出鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://arxiv.org/pdf/1912.03263v3.pdf

常用的分类器模型都是在建模 p θ ( y ∣ x ) p_{\theta}(y \mid \mathbf{x}) pθ(yx),这篇文章从能量的视角解释分类模型,进而得到一个生成模型和分类模型的混合模型。该模型能够同时建模 p θ ( y ∣ x ) p_{\theta}(y \mid \mathbf{x}) pθ(yx) p θ ( x ) p_{\theta}(\mathbf{x}) pθ(x),从而提高分类精度和样本生成质量。

这篇文章也被用作OOD检测的baseline。

Joint Energy-based Model(JEM)

先来overview一下模型结构:

image-20210329163217189

一个神经网络分类模型输入到Softmax函数的值称之为 f θ ( x ) f_{\theta}(x) fθ(x),传统的分类器模型用 f θ ( x ) f_{\theta}(x) fθ(x)输入到softmax函数中估计 p ( y ∣ x ) p(y \mid \mathbf{x}) p(yx),这篇文章里同时还用 f θ ( x ) f_{\theta}(x) fθ(x)来估计 p ( x , y ) p( \mathbf{x},y) p(x,y) p ( x ) p(\mathbf{x}) p(x)

本文的方法

EBM

Energy-based model:
p θ ( x ) = exp ⁡ ( − E θ ( x ) ) Z ( θ ) (1) p_{\theta}(\mathrm{x})=\frac{\exp \left(-E_{\theta}(\mathrm{x})\right)}{Z(\theta)} \tag{1} pθ(x)=Z(θ)exp(Eθ(x))(1)
其中 E θ ( x ) : R D → R E_{\theta}(\mathrm{x}): \mathbb{R}^{D} \rightarrow \mathbb{R} Eθ(x):RDR是能量函数, Z ( θ ) = ∫ x exp ⁡ ( − E θ ( x ) ) Z(\theta)=\int_{\mathbf{x}} \exp \left(-E_{\theta}(\mathbf{x})\right) Z(θ)=xexp(

我们的分类器可以秘密满足多源域适应。 多源域适应是指在训练模型时,通过利用来自多个不同领域的数据来提高分类器在目标领域上的性能。传统的领域适应方法通常要求知道源域和目标域的标签信息,而且需要训练过程中显式地使用源域数据。然而,在一些情况下,我们可能无法取得源域数据或者不希望显示地使用源域数据。 我们的分类器具有秘密满足多源域适应的能力。它可以在不泄露源域数据的情况下,利用多个源域的数据进行训练,从而提高在目标域上的分类性能。这种方法的优势在于保护了源域数据的隐私,同时提高了分类器的泛化能力。 我们的分类器使用了一种先进的深度学习技术,可以在没有源域数据的情况下进行域适应。它借助于迁移学习和领域自适应的理论,能够自动学习源域和目标域之间的差异,并将这些差异应用于目标域的分类任务中。 具体而言,我们的分类器采用了一种深层神经网络结构,通过共享层和特定领域的适应层,实现了对多个源域数据的学习和域适应。在训练过程中,我们使用了无监督的领域适应方法,通过最小化源域数据和目标域数据之间的领域差异,来提高分类器在目标域上的性能。 通过使用我们的分类器,用户可以在不泄露源域数据的情况下,实现秘密的多源域适应。这对于一些敏感数据或隐私保护方面的需求是非常有价值的。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值