yolov9训练步骤

本文介绍了如何在Windows10系统上通过conda创建虚拟环境,升级pip,安装PyTorch及其相关库,解决CUDA兼容性问题,以及配置YOLOv9模型,特别提到降级Pillow版本并调整batchsize以适应本地训练。
摘要由CSDN通过智能技术生成

GIT:

[https://github.com/WongKinYiu/yolov9]

window10+cuda10.2 本地测试:

1、conda

安装和创建虚拟环境
conda create --name yolov9 python=3.8
conda activate yolov9
在这里插入图片描述

2、更新pip版本

python -m pip install  -i https://pypi.doubanio.com/simple/ --upgrade pip
python -m pip install  -i https://pypi.doubanio.com/simple/ --upgrade setuptools

3、环境安装:

nvidia-smi

在这里插入图片描述

pip install torch==1.9.0+cu102  torchvision==0.10.0+cu102  torchaudio==0.9.0  -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt -i https://pypi.doubanio.com/simple/

验证torch是cuda版本

import torch
torch.cuda.is_available()  # cuda是否可用;
torch.cuda.device_count()  # 返回gpu数量;
torch.cuda.get_device_name(0)  # 返回gpu名字,设备索引默认从0开始;
torch.cuda.current_device()  # 返回当前设备索引;

在这里插入图片描述
解决显卡不支持问题;https://blog.csdn.net/weixin_47880303/article/details/124988738
torch下载地址:https://download.pytorch.org/whl/torch_stable.html

二、配置和运行

问题1
在这里插入图片描述

降版本 Pillow 为9.5

配置:

1、data.yaml
在这里插入图片描述在这里插入图片描述
2、模型选用yolov9-c,新建weights文件夹和model文件

在这里插入图片描述
本地需要设置batchsize为2才能训练起来。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值