GIT:
[https://github.com/WongKinYiu/yolov9]
window10+cuda10.2 本地测试:
1、conda
安装和创建虚拟环境
conda create --name yolov9 python=3.8
conda activate yolov9
2、更新pip版本
python -m pip install -i https://pypi.doubanio.com/simple/ --upgrade pip
python -m pip install -i https://pypi.doubanio.com/simple/ --upgrade setuptools
3、环境安装:
nvidia-smi
pip install torch==1.9.0+cu102 torchvision==0.10.0+cu102 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt -i https://pypi.doubanio.com/simple/
验证torch是cuda版本
import torch
torch.cuda.is_available() # cuda是否可用;
torch.cuda.device_count() # 返回gpu数量;
torch.cuda.get_device_name(0) # 返回gpu名字,设备索引默认从0开始;
torch.cuda.current_device() # 返回当前设备索引;
解决显卡不支持问题;https://blog.csdn.net/weixin_47880303/article/details/124988738
torch下载地址:https://download.pytorch.org/whl/torch_stable.html
二、配置和运行
问题1
降版本 Pillow 为9.5
配置:
1、data.yaml
2、模型选用yolov9-c,新建weights文件夹和model文件
本地需要设置batchsize为2才能训练起来。