1.自动控制的一般概念
1.1反馈控制原理
反馈是指把取出的输出量送回输入端,并与输入信号相比产生偏差信号的过程。
反馈控制原理是指在反馈控制系统中,控制装置对被控对象施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量与输入量之间的偏差,从而实现对被控对象进行控制的任务,这就是反馈控制原理。若反馈信号与输入信号相减,使产生的偏差越来越小,则称为负反馈,反之为正反馈。闭环反馈的原理框图如下:
信号类
●给定量(输入量):人为给定、要求系统输出量参照变化的外部指令信号
●控制量:执行器中某个需要被控制的物理量
●被控量(输出量):被控对象中某个需要被控制的物理量
●比较量(反馈量):其值等同于被控量
●干扰信号:对系统输出量产生不利影响的信号
基本元件类
●比较器:将所检测的被控量实际值与给定元件给出的参考两进行比较,确定两者之间的偏差
●控制器:下达指令的装置
●执行器:直接驱动被控对象,使其被控量发生变化
●被控对象:系统中被控制的设备或过程
1.2自动控制系统的基本要求
稳定性:是保证控制系统正常工作的先决条件。
快速性:动态性能,对控制系统的过渡时间要求。
准确性:稳态(过度结束后的)值应尽量与期望值一致。
1.3典型外作用
目前,在控制工程设计中常用的典型外作用函数有阶跃函数、斜坡函数、脉冲函数以及正弦函数等确定性函数。
⑴阶跃信号
实际系统中,意味着t=0时突然加到系统上一个幅值不变的外作用。一般将阶跃函数作用下系统的响应特性作为评价系统动态性能指标的依据,其中包括上升时间、超调量、稳定时间、稳态误差。
⑵斜坡函数
斜坡函数表示作用量随时间线性增加或减小,实际工程中常用的是三角波指令,通过测试斜坡静差,可以验证控制系统型别。
⑶脉冲函数
脉冲函数宽度为零,在t=0时幅值无穷大,是积分面积为A的极限脉冲。现实中不存在这样的信号,但确实在数学上分析控制系统非常有用的工具,脉冲响应能反映控制系统的传递函数特性。
⑷正弦函数
系统在正弦信号作用下的响应,即为频率响应,是研究控制系统性能的重要依据。
2.控制系统的数学模型
2.1时域数学模型
显然,这是一个二阶线性微分方程,也就是图2-1无源网络的时域数学模。
运动模态:
在数学上,线性微分方程的解由输入作用下的特解和齐次微分方程的通解组成。通解由微分方程的特征根所决定,它代表自由运动。
2.2复域数学模型
(1)传递函数的定义
线性定常系统的传递函数,定义为零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比。示例
传递函数一般表达式 有理分式形式:
性质:
G(s)是复变量S的有理真分式函数,分子多项式的次数m低于或等于分母多项的次数n,所有系数均为实数;
G(s)只取决于系统和元件的结构,与输入信号无关,不反映系统内部任何信息;
G(s)的拉氏变换是系统的脉冲响应。
(2)传递函数的零点和极点
传递函数的分子多项式和分母多项式经因式分解后可写为如下形式:
传递函数分子多项式的根 zi 称为传递函数的零点;分母多项式的根 pj 称为传递函数的极点。K* 称为传递系数或根轨迹增益。其中,极点决定系统响应形式(模态),零点影响各模态在响应中所占比重。
(3)典型环节及其传递函数
2.3控制系统结构框图
(1)系统结构图组成
控制系统的结构图描述系统各元部件之间信号传递关系的数学图形,它们表示了系统中各变量之间的因果关系以及对各变量所进行的运算,是控制理论中描述复杂系统的一种简便方法。
控制系统的结构图是由许多对信号进行单向运算的方框和一些信号流向线组成,它包含如下四种基本单元:
(2)结构图的等效变换和简化
由控制系统的结构图通过等效变换(或简化)可以方便地求取闭环系统的传递函数或系统输出量的响应。实际上,这个过程对应于由元部件运动方程消去中间变量求取系统传递函数的过程。
3.线性系统的时域分析法
3.1系统时间响应的性能指标
(1)典型输入信号
典型输入信号时域与复域表达式:
(2)动态性能与稳态性能
动态性能
通常在阶跃函数作用下,测定或计算系统的动态性能。假设单位阶跃响应曲线如下:
动态性能指标如下:
稳态性能
若时间趋于无穷时,系统的输出量不等于输入量或输入量的确定函数,则系统存在稳态误差。稳态误差是系统控制精度或抗扰动能力的一种度量。
3.2一阶系统的单位阶跃响应
下图RC电路的传递函数为:
其中T=RC
设输入为单位阶跃信号r(t)=1(t),其拉氏变换为R(t)=1/s。代入R(s)得到:
反拉氏变换得到单位阶跃响应函数:
按照动态性能定义,调节时间等于3T(△=5%)或4T(△=2%)。显然,峰值时间和超调量都不存在。
3.3二阶系统的单位阶跃响应
二阶系统的标准形式和传函如下图所示:
其闭环极点为:
其中,ωn为自然频率,ζ为阻尼比。由传函可知,当ζ<0时,闭环极点位于s域右半轴,系统不稳定。二阶系统的单位阶跃响应为:
欠阻尼(O<ζ<1)二阶系统的单位阶跃响应为:
其中,阻尼振荡角频率 ,阻尼角
。
上升时间:
当阻尼比ζ一定时,阻尼角β不变,系统的响应速度与ωn成正比;而阻尼振荡频率ωd一定时,阻尼比越小,上升时间越短。
峰值时间:阻尼比一定时,闭环极点离负实轴的距离越远,系统的峰值时间越短
超调量:阻尼比越大,超调量越小,反之亦然。
调节时间:Δ=0.05
上式表明,调节时间与闭环极点的实部数值成反比。闭环极点距虚轴的距离越远,系统的调节时间越短。由于阻尼比值主要根据对系统超调量的要求来确定,所以调节时间主要由自然频率决定。若能保持阻尼比值不变而加大自然频率值,则可以在不改变超调量的情况下缩短调节时间。
3.4劳斯判据
(1)线性系统稳定的充分必要条件
根据李雅普诺夫稳定性理论,线性控制系统的稳定性可叙述如下:
若线性控制系统在初始扰动的影响下,其动态过程随时间的推移逐渐衰减并趋于零(原平衡工作点),则称系统渐近稳定,简称稳定;反之,若在初始扰动影响下,系统的动态过程随时间的推移而发散,则称系统不稳定。
线性系统稳定的充分必要条件是:闭环系统特征方程的所有根均具有负实部;或者说,闭环传递函数的极点均位于s左半平面。
(2)劳斯-赫尔维茨稳定判据
设线性系统的特征方程为
系统稳定的必要条件:特征方程各项系数均大于零,即an > 0
系统稳定的充分必要条件为:劳斯表中第一列各值为正。如果劳斯表第一列中出现小于零的数值,系统就不稳定,且第一列各系数符号的改变次数,代表特征方程的正实部根的数目。
劳斯表计算:
示例:
3.5线性系统的稳态误差计算
(1)稳态误差计算
线性系统的结构图如下,其误差信号为:
,如果有理函数sE(s)除在原点处有唯一的极点外,sE(s)的极点均位于s左半平面,则稳态误差计算公式为:
(2)系统类型
分子阶次为m,分母阶次为n的开环传递函数可表示为
式中,K为开环增益;τ和T为时间常数;v为开环系统在s平面坐标原点上的极点的重数。现在的分类方法是以v的数值来划分的: v=0,称为0型系统;v=1,称为Ⅰ型系统;v=2,称为Ⅱ型系统……当v>2时,除复合控制系统外,使系统稳定是相当困难的。
系统稳态误差计算通式则可表示为:
上式表明,影响稳态误差的诸因素是:系统型别,开环增益,输入信号的形式和幅值。
同一个控制系统,在不同形式的输入信号作用下具有的稳态误差如下图所示,可知,如果是阶跃输入,0型系统是有静态误差的,如果要求系统对于阶跃输入作用不存在稳态误差,则必须选用Ⅰ型及Ⅰ型以上的系统。如果是斜坡输入,对于Ⅰ型单位反馈系统,稳态输出速度恰好与输入速度相同,但是存在稳态位置误差,使用Ⅱ型及Ⅱ型以上的系统则不存在稳态位置误差。如果是加速度输入,对于Ⅱ型单位反馈系统稳态输出的加速度与输入加速度函数相同,但存在一定的稳态位置误差,使用Ⅲ型以上系统,只要系统稳定,则不存在稳态位置误差。
3.6减小或消除稳态误差的措施
(1)增大系统开环增益或扰动作用点之前系统的前向通道增益
增大系统开环增益K以后,对于0型系统,可以减小系统在阶跃输入时的位置误差;对于Ⅰ型系统,可以减小系统在斜坡输入时的速度误差;对于Ⅱ型系统,可以减小系统在加速度输人时的加速度误差。
(2)在系统的前向通道或主反馈通道设置串联积分环节
特别需要指出,在反馈控制系统中,设置串联积分环节或增大开环增益以消除或减小稳态误差的措施,必然导致降低系统的稳定性,甚至造成系统不稳定,从而恶化系统的动态性能。因此,权衡考虑系统稳定性、稳态误差与动态性能之间的关系,便成为系统校正设计的主要内容。
(3)采用串级控制抑制内回路扰动
当控制系统中存在多个扰动信号,且控制精度要求较高时,宜采用串级控制方式,可以显著抑制内回路的扰动影响。
(4)采用复合控制方法
如果控制系统中存在强扰动,特别是低频强扰动,则一般的反馈控制方式难以满足高稳态精度的要求,此时可以采用复合控制方式。复合控制系统是在系统的反馈控制回路中加入前馈通路,组成一个前馈控制与反馈控制相结合的系统,只要系统参数选择合适,不但可以保持系统稳定,极大地减小乃至消除稳态误差,而且可以抑制几乎所有的可量测扰动,其中包括低频强扰动。
4.线性系统的频域分析法
4.1频率特性
以图5-1所示的RC滤波网络为例,设电容C的初始电压为u。取输入信号为正弦信号:
由图5-2可见,RC网络的稳态输出信号仍为正弦信号,频率与输入信号的频率相同,幅值较输入信号有一定衰减,其相位存在一定延迟。
对于稳定的线性定常系统,由谐波输入产生的输出稳态分量仍然是输入同频率的谐波函数,而幅值和相位的变化是频率ω的函数,且与系统数学模型相关,定义谐波输入下,输出响应中与输入同频率的谐波分量与谐波输入的幅值之比为幅频特性,相位之差为相频特性,并称其指数表达形式:
为系统的频率特性。
4.2对数频率特性曲线
(1)典型环节开环对数频率特性曲线
对数频率特性曲线又称为伯德曲线或伯德图。对数频率特性曲线的横坐标按 lgω分度,单位为弧度/秒(rad/s),对数幅频曲线的纵坐标按
线性分度,单位是分贝(dB)。对数相频曲线的纵坐标按线性分度,单位为度(°)。由此构成的坐标系称为半对数坐标系。
比例环节:
积分环节:
纯微分环节:
二阶震荡环节:
典型环节交接频率和斜率如下图:
4.3稳定裕度
(1)相角裕度y和幅值裕度h
相角裕度为,相角裕度y的含义是,对于闭环稳定系统,如果系统开环相频特性再滞后γ 度,则系统将处于临界稳定状态。相位裕量γ > 0 则系统稳定,否则系统不稳定。γ 值越大,其系统的稳定程度越高,但系统的响应速度慢,工程上一般要求 γ ≥ 40 ° ( 40 ° − 60 ° ) 。
幅值裕度为:幅值裕度h的含义是,对于闭环稳定系统,如果系统开环幅频特性再增大h倍,则系统将处于临界稳定状态;对于闭环不稳定的系统,幅值裕度指出了为使系统临界稳定,开环幅频特性应当减小到原来的1/h。幅值裕量h > 0则系统稳定,否则系统不稳定。 h 值越大,其闭环系统稳定程序越高。一般要求 h ⩾ 6 d B ( 6 d B − 10 d B )。
对于非最小相位系统,稳定裕度的正确解释需要仔细地进行研究。确定非最小相位系统稳定性的最好方法,是采用极坐标图法,而不是伯德图法。对于连续时间系统,如果控制系统开环传递函数的所有极点和零点均位于s左半平面上,则称该系统为最小相位系统。对于离散时间系统,则是所有零极点均位于单位圆内。
4.4控制系统的带宽
(1)闭环带宽
在控制系统中,一般指闭环系统的bode图中幅频特性曲线下降到-3分贝所对应的频率。
系统带宽扩大n倍,则响应速度加速n倍。带宽大的系统跟踪信号的能力强,因为能在较宽的频率带中跟踪原信号并保持较大的稳态幅值。反过来,一方面,抑制输入端高频干扰的能力则弱,因此系统带宽的选择在设计中应折中考虑,,不能一味求大。
5.线性系统的矫正方法
5.1系统的设计与校正问题
(1)系统带宽的确定
为了使系统能够准确复现输入信号,要求系统具有较大的带宽;然而从抑制噪声角度来看,又不希望系统的带宽过大。此外,为了使系统具有较高的稳定裕度,希望系统开环对数幅频特性在截止频率ωc处的斜率为-20dB/dec ,但从要求系统具有较强的从噪声中辨识信号的能力来考虑,却又希望ωc处的斜率小于-40dB/dec。系统输入端的信号,既有输入信号r(t),又有噪声信号n(t),如果输入信号的带宽为0-ωn,噪声信号集中起作用的频带为ω1~ωn,则控制系统的带宽频率通常取为
且使ω1~ωn处于0-ωb范围之外,如下图所示:
(2)基本控制规律
比例(P)控制规律:
P控制器实质上是一个具有可调增益的放大器。在信号变换过程中,P控制器只改变信号的增益而不影响其相位。在串联校正中,加大控制器增益Kp,可以提高系统的开环增益,减小系统稳态误差,从而提高系统的控制精度,但会降低系统的相对稳定性。
具有积分控制规律的控制器,称为Ⅰ控制器。Ⅰ控制器的输出信号m(t)与其输人信号e(t)的积分成正比,即
在串联校正时,采用Ⅰ控制器可以提高系统的型别(无差度),有利于系统稳态性能的提高,但积分控制使系统增加了一个位于原点的开环极点,使信号产生90°的相角滞后,于系统的稳定性不利。因此,在控制系统的校正设计中,通常不宜采用单一的Ⅰ控制器。
比例-积分(PI)控制
具有比例-积分控制规律的控制器,称PI控制器,其输出信号m(t)同时成比例地反应输入信号e(t)及其积分,即
在串联校正时,PI控制器相当于在系统中增加了一个位于原点的开环极点,同时也增加了一个位于s左半平面的开环零点。位于原点的极点可以提高系统的型别,以消除或减小系统的稳态误差,改善系统的稳态性能;而增加的负实零点则用来减小系统的阻尼程度,缓和PI控制器极点对系统稳定性及动态过程产生的不利影响。只要积分时间常数T足够大,PI 控制器对系统稳定性的不利影响可大为减弱。在控制工程实践中,PI控制器主要用来改善控制系统的稳态性能。
比例-积分-微分(PID)控制规律
需要指出,因为微分控制作用只对动态过程起作用,而对稳态过程没有影响,且对系统噪声非常敏感,所以单一的D控制器在任何情况下都不宜与被控对象串联起来单独使用。性。PID控制器各部分参数的选择,在系统现场调试中最后确定。通常,应使Ⅰ部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使D部分发生在系统频率特性的中频段,以改善系统的动态性能。
5.2常用校正方法
在频域内进行系统设计,是一种间接设计方法,一般仅适用于最小相位系统,在伯德图上虽然不能严格定量地给出系统的动态性能,但却能方便地根据频域指标确定校正装置的参数特别是对已校正系统的高频特性有要求时,采用频域法校正较其他方法更为方便。频域设计的这种简便性,是由于开环系统的频率特性与闭环系统的时间响应有关。一般地说,开环频率特性的低频段表征了闭环系统的稳态性能;开环频率特性的中频段表征了闭环系统的动态性能;开环频率特性的高频段表征了闭环系统的复杂性和噪声抑制性能。因此,用频域法设计控制系统的实质,就是在系统中加入频率特性形状合适的校正装置,使开环系统频率特性形状变成所期望的形状:低频段增益充分大,以保证稳态误差要求;中频段对数幅额特性斜率一般为-20dB / dec ,并占据充分宽的频带,以保证具备适当相角裕度;高频段增益尽快减小,以削弱噪声影响.若系统原有部分高频段已符合该种要求,则校正时可保持高频段形状不变,以简化校正装置的形式。
(1)串联滞后校正
利用滞后网络或PI控制器进行串联校正的基本原理,是利用滞后网络或PI控制器的高频幅值衰减特性,使已校正系统截止频率下降,从而使系统获得足够的相角裕度。滞后校正可以用来改善系统的稳态性能。这是因为滞后校正降低了高频增益,使系统的总增益增大,低频增益可以增加,从而改善了稳态精度(降低了稳态误差)。此外,系统中包含的任何高频噪音,都可以得到衰减。
(2)前馈校正
前馈调节:它允许系统根据已知或预测的信号来直接调整其反应,以适应环境变化,前馈调节不同于反馈调节,因为前馈调节在系统参数发生变化或受到干扰时立即进行调节,而不是等到系统响应后才开始调整。这种调节方式可以避免矫枉过正和滞后反应,使得整个调节控制过程更加迅速和及时。
前馈校正按给定的前馈校正和按扰动的前馈校正,前馈校正的输入取自闭环外,不会影响系统的闭环特征方程式,不会影响系统的稳定性。前馈校正可以提高系统的精度,一般不单独使用,常和其它校正方式结合应用构成复合控制系统。
按扰动完全补偿,具体实现时的困难:
1.要求扰动量可测
2.能够获得原系统的部分的精确数学模型,且在运行过程中系统参数不能发生变化
3.为补偿扰动的前馈装置传递函数的具体实现比较困难。
前馈补偿的不准确而留下的扰动影响将由反馈控制纠正,也就是说反馈控制弥补了前馈校正的不足。另一方面,也可以说前馈校正减轻了反馈控制的负担而提高了控制质量。
6.线性离散系统
6.1信号的采样与保持
(1)采样过程
把连续信号变换为脉冲序列的装置称为采样器,又叫采样开关。采样开关一次闭合的持续时间为t;采样器的输入e(t)为连续信号;输出e*(t)为宽度等于τ的调幅脉动序列,在采样瞬时nT(n=0,1,2,…,∞)时出现。
考虑到采样开关的闭合时间τ非常小,可以认为τ=0。如下图所示设(t)为理想单位脉冲序列图c所示的理想采样器的输出信号e(t),可以认为是图(a)所示的输入连续信号e(t)调制在载波
上的结果。则有:
,该式又可表示为:
香农采样定理指出:如果采样器的输入信号e(t)具有有限带宽,并且有直到
的频率分量,则使信号e(t)圆满地从采样信号e*(t)中恢复过来的采样周期T,满足下列条件:
,即采样信号频率
。
(2)信号保持
通常,采用如下多项式外推公式描述保持器:
现在时刻的输出e(nT+Δt)值,取决于Δt=0,-T,-2T,…,-mT各过去时刻的离散信号e*(nT),e*[(n-1)T],e* [(n-2)T],…,e*[(n-m)T]的(m+1)个值。若取m=0,则称零阶保持器。
零阶保持器是一种按常值外推的保持器,它把前一采样时刻nT的采样值e(nT)一直保持到下一采样时刻(n+1)T到来之前,从而使采样信号e*(t)变成阶梯信号(t),如下图所示,零阶保持器的数学表达式为
零阶保持器频率特性如下图所示,由图可知,零阶保持器有如下特性:
1)低通特性。且截止频率不止一个,所以零阶保持器除允许主要频谱分量通过外,还允许部分高频频谱分量通过,从而造成数字控制系统的输出中存在纹波
2)相角滞后特性。由相频特性可见,零阶保持器要产生相角滞后,且随ω的增大而加大,在ω=
处,相角滞后可达-180°,从而使闭环系统的稳定性变差。
3)时间滞后特性。零阶保持器的输出为阶梯信号(t),其平均响应为e[t-(T/2)],表明其输出比输入在时间上要滞后T/2,相当于给系统增加了一个延迟时间为T/2的延迟环节,使系统总的相角滞后增大,对系统的稳定性不利;此外,零阶保持器的阶梯输出也同时增加了系统输出中的纹波。
4)零阶保持器不影响系统的阶数,不改变开环极点,只改变开环零点
6.2 Z变换理论
(1)Z变换方法
z变换是一种在采样拉氏变换中,取的变量置换。通过这种置换,可将s的超越函数转换为z的幂级数或z的有理分式。下表为常用时间函数的z变换表。由表可见,这些函数的z变换都是z的有理分式,且分母多项式的次数大于或等于分子多项式的次数。值得指出,表中各z变换有理分式中,分母z多项式的最高次数与相应传递函数分母s多项式的最高次数相等。
(2)Z变换基本定理
①线性定理
函数线性组合的Z变换,等于各函数Z变换的线性组合
② 平移定理
t<0时,f(t)的值为零, f(t)的Z变换为F(z)则:
原函数延迟的采样周期数为k,象函数则乘。算子
的含义表示时域中时滞环节,把脉冲延迟k个周期。
③复数位移定理
f(t)的Z变换为F(Z),则
④终值定理
f(t)的Z变换为F(z),f(nT)序列为有限值(n=0,1,2,…),并且极限
存在,则函数序列的终值:
⑤卷积定理
设x(nT)和 y(nT)为两个采样函数,其离散卷积定义为
则由卷积定理,若:
必有
(3)Z反变换
①部分分式法
先把变换式写成F(Z)/Z,然后展开成部分分式:
然后两端乘以Z,从而得到:
最后查Z变换表
③留数法
E(z)的幂级数展开形式为
根据柯西留数定理,设函数E(z)
除有限个极点z1,z2,…, zk外,在域G上是解析的。如果有闭合路径г包含了这些极点,则有
式中,表示函数
在极点处的留数。例如:
6.3 离散系统的数学模型
将输入序列r(n),n=0,土1,土2,…,变换为输出序列c(n)的一种变换关系,称为离散系统。记为:
其中,r(n)和 c(n)可以理解为t=nT时,系统的输入序列r(nT)和输出序列c(nT),T为采样周期。
(1)脉冲传递函数
设开环离散系统如下图所示,如果系统的初始条件为零,输入信号为r(t),采样后r(t)的z变换函数为R(z),系统连续部分的输出为c(t),采样后c*(t)的z变换函数为C(z),则线性定常离散系统的脉冲传递函数定义为系统输出采样信号的z变换与输入采样信号的z变换之比,记为
如果开环离散系统由两个串联环节构成,则开环系统脉冲传递函数的求法与连续系统情况不完全相同。这是因为在两个环节串联时,有两种不同的情况。
①有采样开关
C(Z)=G2(Z)D(Z)=G1(Z)G2(Z)R(Z)
G(Z)=C(Z)/R(Z)=G1(Z)G2(Z)
脉冲传递函数等于两个环节的脉冲传函之积,这一结论也可以推广到类似的n个环节相串联。
②无采样开关
没有理想采样开关隔开的两个线性连续环节串联时的脉冲传递函数,等于这两个环节传递函数乘积后的相应z变换。这一结论也可以推广到类似的n个环节相串联。
(3)有零阶保持器时的开环系统脉冲传递函数
(4)闭环系统脉冲传递函数
由于采样器在闭环系统中可以有多种配置的可能性,因此闭环离散系统没有唯一的结构图形式。
6.4离散系统的稳定性与稳态误差
(1)s域到z域的映射
在z变换定义中,给出了s域到z域的关系s域中的任意点可表示为s=
+jω,,映射到z域则为:
于是,s域到z域的基本映射关系式为:
(2)离散系统的稳定性
①离散系统稳定的充分必要条件
设差分方程通解为:
系统稳定的充分必要条件是:当且仅当差分方程所有特征根的模|a|<1(i=1,2,…,n),相应的线性定常离散系统是稳定的。
②z域中离散系统稳定的充分必要条件
设离散系统特征方程如下图所示,当且仅当离散系统特征方程的全部特征根均分布在z平面上的单位圆内,或者所有特征根的模均小于1,即||(i=1,2,……, n),相应的线性定常离散系统是稳定的。
③朱利稳定判据
设离散系统n阶闭环特征方程可以写为:
利用特征方程的系数,按照下述方法构造(2n-3)行、(n+1)列朱利阵列,如表7-4所示。
在朱利阵列中,第2k+2行各元,是2k+1行各元的反序排列。从第三行起,阵列中各元的定义如下:
特征方程D(z)=0的根,全部位于z平面上单位圆内的充分必要条件为:
以及下列n-1个约束条件成立:
否则系统不稳定。
(3)采样周期与开环增益对稳定性的影响
1)当采样周期一定时,加大开环增益会使离散系统的稳定性变差,甚至使系统变得不稳定。
2)当开环增益一定时,采样周期越长,丢失的信息越多,对离散系统的稳定性及动态性能均不利,甚至可使系统失去稳定性。
(4)离散系统的稳态误差
若离散系统是稳定的,则可用z变换的终值定理求出采样瞬时的稳态误差:
零阶保持器不影响开环系统脉冲传递函数的极点。因此,开环脉冲传递函数G(z)的极点,与相应的连续传递函数 G(s)的极点是一一对应的。参照连续系统,类似地把G(z)中v=0,1,2,…的系统,称为0型、I型和Ⅱ型离散系统等。稳态误差表如下:
(5)采样器和保持器对系统性能的影响
1)采样器可使系统的峰值时间和调节时间略有减小,但使超调量增大,故采样造成的信息损失会降低系统的稳定程度。然而,在某些情况下,例如在具有大延迟的系统中,误差采样反而会提高系统的稳定程度。
2)零阶保持器使系统的峰值时间和调节时间都加长,超调量有所增加。这是因为除了采样造成的不稳定因素外,零阶保持器的相角滞后降低了系统的稳定程度。
6.4 PID数字控制器的实现
复域,频域,Z域有如下映射关系:
(1)离散化方法
①向前差分
对于一个连续函数y(t)在kT时刻的微分可以做以下近似:
对上式的左右两端分别进行拉氏变换和Z变换,可以得到如下映射关系:
这种方法s域左半平面映射到z域z<1区域,显然包含不稳定区域,因此连续系统稳定离散系统可能不稳定,因此这种方法很少用。
②向后差分
将y(t)在kT时刻的微分可以做以下近似:
对上式的左右两端分别进行拉氏变换和Z变换,可以得到如下映射关系:
这种方法将s域左半平面映射到z域以0.5为圆心0.5为半径的圆,不产生频率混叠,但是存在频率畸变。
③双线性变换法
利用
再泰勒展开得
s左半平面映射到z域单位圆内,变化前后频率发生畸变:
,高频有较大畸变。双线性变换后引入一个(-1,0)极点,会引起系统震荡。
(2)pid差分方程
PI后向差分的仿真结果和双线性变换的结果基本一致。所以当使用PI控制器时可以使用双线性变换,使用PID控制器时不可以使用双线性变换。但对微分D项进行不完全微分,可改变z域的稳定性,从而消除z=-1的不稳定极点。
PID控制器的传递函数为:
应用向后差分法得到差分方程:
同理PI控制器向后差分法得到差分方程:
PI控制器双线性变换法得到差分方程:
7线性系统的状态空间分析
7.1线性系统状态空间
(1)状态空间概念
状态: 反映系统运动状况, 并可用以确定系统末来行为的信息集合。
状态变量: 确定系统状态的一组独立 (数目最少) 变量, 状态变量常用符号x(t),x2(t),,,Xn(t)表示。
状态向量:把描述系统状态的n个状态变量x(t),xz(1),…,X(t)看做向量xt)的分量,即
则向量x(t)称为n维状态向量。给定时的初始状态向量x(to)及
的输入向量u(t),则
的状态由状态向量x(t)唯一确定。
状态空间: 以n个状态变量作为基底所组成的n维空间称为状态空间
线性系统的状态空间表达式:若线性系统描述系统状态量与输人量之间关系的状态方程是一阶向量线性微分方程或一阶向量线性差分方程,而描述输出量与状态量和输人量之间关系的输出方程是向量代数方程,则其组合称为线性系统状态空间表达式,又叫动态方程,其连续形式为
对于线性离散时间系统,由于在实践中常取 tk=kT(T为采样周期),其状态空间表达式的一般形式可写为
通常,若状态x、输人u、输出y的维数分别为n,p, q,则称nxn矩阵A(t)及G(k)为系统矩阵或状态矩阵,称nxp矩阵B(t)及H(k)为控制矩阵或输入矩阵,称q×n矩阵C(t)及C(k)为观测矩阵或输出矩阵,称q×p矩阵D(t)及D(k)为前馈矩阵或输入输出矩阵。
(2)线性定常连续系统状态方程的解
①齐次方程的解
状态方程,称为齐次状态方程。拉普拉斯变换法得到的解为:
。
状态转移矩阵=
②状态转移矩阵的运算性质
8)若为
的状态转移矩阵,则引入非奇异变换
后的状态转移矩阵为
③非齐次状态方程的解
状态方程,称为非齐次状态方程, 其拉普拉斯变换法解为:
(3)系统的传递函数矩阵
①传递函数矩阵定义
初始条件为零时,输出向量的拉氏变换式与输入向量的拉氏变换式之间的传递关系称为传递函数矩阵,简称传递矩阵。设系统动态方程为:
系统的传递函数矩阵表达式为:
Gij(s)(i=1,2,…, q;=1,2,…, p)表示第i个输出量与第j个输入量之间的传递函数.
② 开环与闭环传递矩阵
设多输入-多输出系统结构图如下图所示。图中U,Y,Z,E分别为输入、输出、反馈、偏差向量;G,H分别为前向通路和反馈通路的传递矩阵。由图可知
定义偏差向量至反馈向量之间的传递矩阵H(s)G(s)为开环传递矩阵:
定义输入向量至输出向量之间的传递矩阵为闭环传递矩阵,记为
定义输入向量至偏差向量之间的传递矩阵为偏差传递矩阵,记为为
③耦合系统解耦
对一个耦合系统进行控制是复杂的,工程中常希望实现某一输出量仅受某一输人量的控制,这种控制方式称为解耦控制,其相应的系统称为解耦系统。解耦系统的输人向量和输出向量必有相同的维数,传递矩阵必为对角阵,即
①串联补偿实现解耦
如下图所示,引入 Gc(s)后的闭环传递矩阵为
经整流有
故应为对角矩阵,故有
②前馈补偿器实现解耦
如下图所示引入 Gd(s)后解耦系统的闭环传递矩阵为
希望为对角矩阵,则
(4)线性离散系统状态空间表达式的建立及其解
①定常连续动态方程的离散化
线性定常多输入-多输出离散系统的动态方程为
与连续系统状态转移矩阵
的关系为
定常离散动态方程的解
,式中,
表示k个G自乘。
7.2线性系统的可控性与可观测性
如果系统所有状态变量的运动都可以由输入来影响和控制而由任意的初态达到原点,则称系统是完全可控的,或者更确切地说是状态完全可控的,简称为系统可控;否则,就称系统是不完全可控的,或简称为系统不可控。相应地,如果系统所有状态变量的任意形式的运动均可由输出完全反映,则称系统是状态完全可观测的,简称为系统可观测;反之,则称系统是不完全可观测的,或简称为系统不可观测。
(1)可控性与可观性概率
①可控性
线性时变系统的状态方程
状态可控 如果对取定初始时刻的一个非零初始状态
存在一个时刻
和一个无约束的容许控制
,使状态由
转移到t1时的
,则称此x0是在t0时刻可控的。
系统可控 如果状态空间中的所有非零状态都是在时刻可控的,则称系统在时刻t0是完全可控或一致可控的,简称系统在时刻t0可控。
系统不完全可控 取定初始时刻,如果状态空间中存在一个或一些非零状态在时刻t0是不可控的,则称系统在时刻t0是不完全可控的,也称为系统是不可控的。
②可观性
系统完全可观测 如果取定初始时刻,存在一个有限时刻
,对于所有
,系统的输出y(t)能唯一确定状态向量的初值x(t0),则称系统在[t0,t1]内是完全可观测的,简称系统可观测。如果对于一切t>t0系统都是可观测的,则称系统在内完全可观测。
系统不可观测 如果取定初始时刻,存在一个有限时刻
,对于所有
,系统的输出y(t)不能唯一确定所有状态的初值xi(t0),i=1,2,…, n,即至少有一个状态的初值不能被y(t)确定,则称系统在时间区间[t0,ti]内是不完全可观测的,简称系统不可观测。
(2) 线性定常连续系统的可控性与可观性判据
线性定常连续系统的状态方程
①系统可控性
秩判据线 :性定常连续系统完全可控的充分必要条件是
其中,n为矩阵A的维数,称为系统的可控性判别阵。
②输出可控性
输出可控性若在有限时间间隔[t0,t1]内,存在无约束分段连续控制函数u(t),,能使任意初始输出y(t0)转移到任意最终输出y(t1),则称此系统输出完全可控,简称输出可控。
设线性定常连续系统的状态方程和输出方程为
y为q维输出向量.S0为qx(n+1)p矩阵,称为输出可控性矩阵。输出可控的充分必要条件是,输出可控性矩阵的秩等于输出向量的维数q,即
③系统可观测性
考虑输入u=0时系统的状态方程和输出方程 ,x为n维状态向量。
线性定常连续系统完全可观测的充分必要条件是:
。
(3) 线性定常连续系统的可控性与可观性判据
设线性时变离散时间系统的状态方程为
其中Tk,为离散时间定义区间。如果对初始时刻l∈Tk,和状态空间中的所有非零状态x(l),都存在时刻
,和对应的控制u(k),使得x(m)=0,则称系统在时刻1为完全可控。
如果对初始时刻,和初始状态x(l)=0,存在时刻l∈Tk,和相应的控制u(k),使x(m)可为状态空间中的任意非零点,则称系统在时刻l为完全可达。
①可控和可达
1)线性离散时间系统的可控性和可达性为等价的充分必要条件是,系统矩G(k)对所有为非奇异。
2)线性定常离散时间系统的可控性和可达性等价的充分必要条件是系统矩阵G为非奇异。
3)如果线性离散时间系统是相应连续时间系统的时间离散化模型则其可控性和可达性必是等价的。
线性定常离散系统的可控性判据:设单输入线性定常离散系统的状态方程为,x为n维状态向量;u为标量输入;G为nxn非奇异矩阵,于是多输入线性离散系统状态可控的充分必要条件是
②可观性
设离散系统为
若对初始时刻l∈Tk的任一非零初始状态x(I)=x0,都存在有限时刻,且可由[l,m]上的输出y(k)唯一地确定x0,则称系统在时刻l是完全可观测的。
系统可观测的充分必要条件为
7.3李雅普诺夫稳定性分析
①李雅普诺夫第一法(间接法)
对于线性定常系统,
1)系统的每一平衡状态是在李雅普诺夫意义下稳定的充分必要条件是,A的所有特征值均具有非正(负或零)实部,且具有零实部的特征值为A的最小多项式的单根。
2)系统的唯一平衡状态x =0是渐近稳定的充分必要条件是,A的所有特征值均具有负实部。
②李雅普诺夫第二法(直接法)
定常系统大范围渐近稳定判别定理1对于定常系统
其中f(0)=0,如果存在一个具有连续一阶导数的标量函数V(x),V(0)=0,并且对于状态空间X中的一切非零点x满足如下条件:
1)V(x)为正定;
2)为负定;
3)当时V(x)→∞.
7.4性定常系统的反馈结构及状态观测器
(1) 反馈结构对系统性能的影响
①对系统可控性和可观测性的影响
定理1:对于线性定常系统,状态反馈的引入不改变系统的可控性,但可能改变系统的可观测性;状态反馈可能改变系统的可观测性,其原因是状态反馈造成了所配置的极点与零点相对消;
定理2:对于线性定常系统,输出至状态微分反馈的引入不改变的可观测性,但可能改变系统的可控性;
定理3:对于线性定常系统,输出至参考输入反馈的引入能同时不改变系统的可控性和可观测性,即输出反馈系统为可控(可观测)的充分必要条件是被控系统
为可控(可观测);
②对系统稳定性的影响
状态反馈和输出反馈都能影响系统的稳定性,加入反馈,使得通过反馈构成的闭环系统成为稳定系统,称之为镇定;对于线性定常被控系统:如果可以找到状态反馈控制律:
其中:v 为参考输入,使得通过反馈构成的闭环系统:
是渐近稳定的,即(A-BK)的特征值均具有负实部,则称系统实现了状态反馈镇定;
定理4 :当且仅当线性定常系统的不可控部分渐近稳定时,系统是状态反馈可镇定的;
③极点可配置条件
1利用状态反馈的极点可配置条件
定理1:利用状态反馈任意配置闭环极点的充分必要条件是被控线性定常系统可控。
2利用输出反馈的极点可配置条件
定理2:用输出至状态微分的反馈任意配置闭环极点的充分必要条件是被控系统可观测;
(2)全维状态观测器及其设计
很多情况下,多数状态变量不易测得或不可能测得,可利用被控对象的输入量和输出量建立状态观测器(亦称状态估计器、状态重构器)来重构状态的问题,当重构状态向量的维数等于被控对象状态向量的维数时,称为全维状态观测器;
①全维状态观测器构成方案
设被控对象动态方程为:
构造一个动态方程与上式相同且能用计算机实现的模拟被控系统:
式中:、
分别为模拟系统的状态向量和输出向量,是被控对象状态向量和输出向量的估值。两个系统被控对象的初始状态可能很不相同,必定存在估计状态与被控对象实际状态的误差
,
的存在必定导致
的存在,被控系统的输出是可测量的,可将
负反馈至,控制
尽快逼近于零,从而使
尽快逼近于零。
②全维状态观测器分析设计
全维状态观测器动态方程
故有:
式中:(A−HC)称为观测器系统矩阵,只有满足 观测器才能工作,即(A-HC)的全部特征值具有负实部,
③分离特性
定理8(分离定理):若被控系统(A,B,C)可控可观测,用状态观测器估值形成状态反馈时,其系统的极点配置和观测器设计可分别独立进行,即K和H阵的设计可分别独立进行;