图解DeepSeek R1训练流程

来源:Deepseek R1 论文解读-chance10010​

链接🔗:https://www.bilibili.com/opus/1030715086492139523?spm_id_from=333.1387.0.0&unique_id=10e7841f-b314-45fa-ab72-0cf629421321&code=061eQNll2XANZe4Zm1pl24Ts2O0eQNll&state=

DeepSeek-R1:通过强化学习提升大型语言模型的推理能力

论文题目:《DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

论文链接:https://arxiv.org/abs/2501.12948

论文试图解决的问题

这篇论文介绍了一种新的第一代推理模型——DeepSeek-R1系列,旨在通过强化学习(Reinforcement Learning, RL)提升大型语言模型(Large Language Models, LLMs)的推理能力。具体来说,论文试图解决以下几个问题:

  1. 无监督数据的推理能力培养

    • 传统LLMs依赖大量监督数据来提升推理能力。
    • 论文提出了一种不依赖监督微调(Supervised Fine-Tuning, SFT)的方法,通过纯强化学习过程来培养模型的推理能力。
  2. 推理时的性能扩展

    • 研究如何有效地在测试时扩展推理能力,例如增加推理链(Chain-of-Thought, CoT)的长度。
  3. 模型的自进化能力

    • 论文探索LLMs在没有监督数据的情况下,通过自我进化发展推理能力的可能性,特别是纯RL过程。
  4. 提高模型的可读性和泛化能力

    • 通过引入冷启动数据和多阶段训练流程,提升模型的可读性和语言混合问题。
  5. 小型模型的推理能力提升

    • 通过知识蒸馏技术,将大型模型的推理能力迁移到小型模型,以提高效率。

相关研究

推理增强研究

  • OpenAI的o1系列模型: 通过增加CoT推理过程长度,提升数学、编程、科学推理等任务的性能。

过程和结果的奖励模型(Process-Based Reward Models)

  • Lightman et al. (2023): 提出基于过程的奖励模型,引导模型更好地进行推理。
  • Uesato et al. (2022): 提供过程和结果的反馈。
  • Wang et al. (2023): 研究奖励模型如何引导模型更好推理。

强化学习(Reinforcement Learning)

  • Kumar et al. (2024): 探索如何使用强化学习训练语言模型进行自我修正。
  • Shao et al. (2024) & Wang et al. (2023): 研究强化学习在推理任务中的有效性。

搜索算法

  • Feng et al. (2024), Trinh et al. (2024), Xin et al. (2024): 探索蒙特卡洛树搜索(Monte Carlo Tree Search)和束搜索(Beam Search)在推理任务中的应用。

模型蒸馏(Model Distillation)

  • Qwen (2024b) & Llama (Dubey et al., 2024): 论文利用这些基础模型进行知识蒸馏,以提升小型模型推理能力。

人类偏好对齐(Aligning with Human Preferences)

  • Hendrycks et al. (2020), Gema et al. (2024), Wang et al. (2024): 研究多任务语言理解的基准测试,帮助模型对齐人类偏好。

代码和数学基准测试

  • Jain et al. (2024) & MAA (2024): 评估代码和数学任务的基准测试。

论文如何解决这些问题?

1. 引入DeepSeek-R1-Zero模型

  • 无监督强化学习(RL): 不依赖SFT,展示出色推理能力。
  • 自进化: 训练过程中自然发展推理行为,如自我验证、反思、长CoT推理链。

2. 引入DeepSeek-R1模型

  • 多阶段训练 & 冷启动数据: 解决DeepSeek-R1-Zero的可读性和语言混合问题。
  • 冷启动数据收集: 通过少量提示和模型自生成答案,微调DeepSeek-V3-Base模型作为RL起点。

3. 强化学习算法

  • Group Relative Policy Optimization (GRPO): 通过组分数估计基线,避免使用与策略模型同样大小的评论模型,降低RL训练成本。

4. 奖励建模

  • 准确性奖励和格式奖励: 采用基于规则的奖励系统,训练模型生成特定格式的推理过程和最终答案。

5. 训练模板

  • 推理过程和答案的模板: 训练模型首先生成推理过程,然后生成最终答案。

6. 知识蒸馏

  • 大型模型向小型模型迁移推理能力: 使用Qwen2.5和Llama作为基础模型,从DeepSeek-R1进行蒸馏,提升小型模型推理能力。

7. 实验和评估

  • 广泛基准测试: 数学、编程、知识问答等任务,验证模型性能。

论文实验

  1. DeepSeek-R1 评估

    • 基准测试: MMLU、C-Eval、SWE-Bench Verified、Codeforces等。
    • 开放性任务: 采用AlpacaEval 2.0和Arena-Hard评估。
    • 与其他模型比较: DeepSeek-V3, Claude-Sonnet-3.5, GPT-4o, OpenAI-o1-mini等。
  2. 知识蒸馏模型评估

    • 小型模型性能: AIME 2024, GPQA Diamond, Codeforces等任务。
    • 与开源模型比较: 与QwQ-32B-Preview等进行对比。
  3. 实验设置

    • 最大生成长度: 32,768个token。
    • 评估方法: 使用pass@k评估,并报告pass@1结果。
    • 共识结果: 对AIME 2024,报告使用64个样本的共识(多数投票)结果。


未来研究方向

  1. 长期推理链(Long CoT): 增强函数调用、多轮对话、复杂角色扮演、JSON输出等任务能力。
  2. 优化多语言处理能力: 解决DeepSeek-R1在非中文或英文查询时的语言混合问题。
  3. 减少对提示的敏感性: 优化零样本设置下的性能。
  4. 提升软件工程任务的效率: 采用拒绝采样或异步评估提高性能。
  5. 扩展模型规模和数据: 进一步提升推理能力。
  6. 优化GRPO算法: 提高训练效率和模型性能。
  7. 更复杂的奖励系统: 结合规则和神经网络方法优化奖励建模。
  8. 多模态输入的处理: 跨领域任务推理能力增强。
  9. 增强安全性和伦理性: 避免有害内容生成。
  10. 模型实际应用: 在教育、医疗咨询、客户服务等领域部署。

论文总结

论文提出DeepSeek-R1系列模型,利用强化学习提升LLMs推理能力。通过多阶段训练、奖励建模、知识蒸馏等手段,提升推理能力,并在多个基准测试中验证有效性。此外,论文开源模型和相关工具,支持研究社区进一步探索和改进。

### 如何部署 DeepSeek R1 #### 准备工作 为了成功部署 DeepSeek R1,在开始之前需确保计算机满足最低硬件需求,并完成必要的软件环境搭建。对于 Windows 用户而言,安装 Docker 是必不可少的一个环节[^2]。 #### 安装 Docker 针对 Windows 平台,推荐通过官方渠道下载最新版本的 Docker Desktop 来简化安装流程。按照 CSDN 博客中的《Windows 安装docker(详细图解)》一文所提供的图文指导操作即可顺利完成 Docker 的安装过程。 #### 获取镜像与配置文件 获取 DeepSeek R1 所需的容器镜像以及预训练模型权重是至关重要的一步。通常情况下,这些资源会由开发者提供下载链接或者托管于公共仓库中供使用者拉取。具体方法可以在相关文档里找到详细的说明。 #### 启动服务 当一切准备就绪之后,可以通过命令行工具执行特定指令来启动基于 Docker 的 DeepSeek R1 应用程序实例。这一般涉及到运行 `docker run` 命令并附加相应的参数选项以指定端口映射、卷挂载等设置[^1]。 ```bash docker run -d --name deepseek-r1 \ -p 8080:8080 \ -v /path/to/config:/app/config \ deepseek/r1:latest ``` 上述脚本展示了怎样创建一个新的后台进程用于持续监听外部请求的同时加载自定义配置文件到应用内部路径下。 #### 测试连接 最后要验证整个系统的正常运作情况,打开浏览器访问 http://localhost:8080 或者利用 Postman 这样的 API 调试平台发送测试请求给刚刚建立的服务接口地址来进行功能性的初步检验[^3]。 #### 模型选择与优化 根据实际应用场景的不同可以选择适合自己的预训练模型版本并对性能做出相应调整。例如减少推理延迟时间或是提高识别精度等方面的要求都可以通过对超参微调等方式实现更优的效果。 #### 实际应用场景 构建个人专属 AI 助手能够帮助处理日常事务如日程管理、邮件回复自动化;也可以应用于专业领域比如医疗影像分析辅助诊断疾病等等。总之只要发挥想象力就没有做不到的事情[^4]。 #### 故障排查指南 如果遇到任何问题建议先查阅官方提供的常见问题解答部分寻找解决方案。另外还可以加入社区论坛与其他爱好者交流心得共同解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值