一、前馈神经网络
概念:前馈神经网络、网络层数、输入层、隐藏层、输出层、隐藏单元、激活函数
前馈神经网络(feedforward neural network),也叫作多层感知机(MLP),是典型的深度学习模型。前馈网络的目的是近似某个函数 f^ 。例如,对于分类器, y=f^(x) 将输入 x 映射到一个类别 y 。前馈网络定义了一个映射 y=f(x;t) ,并且学习参数t的值,使它能够得到最佳的函数近似。
1.前馈神经网络介绍
前馈神经网络,也叫作多层感知机MLP,是深度学习模型 ,前馈网络的目的是近似某个函数。例对于分类器,将输入映射到一个类别y.前馈网络定义了一个映射,并且学习参数的值,使它能够得到最佳的函数近似。
2.神经元模型介绍
x1,x2,x3代表输入,代表权重,b代表偏置,g代表非线性激活函数
z叫做带权输入,a叫做激活值,最神经元的输出。
3.神经网络的结构
前馈神经网络之所以被称为网络,是因为它们通常用许多不同函数复合在一起来表示,这个模型与一个有向无环相关联,而图描述是如何复合在一起的。
我们以下图为例子说明神经网络的结构。神经网络分为输入层,隐藏层和输出层。
前馈网络最前面的层称作输入层,最后一层称作输出层,中间既不是输入也不是输出的层叫做隐藏层。
下图是一个3层的神经网络,输入层不计入层数。神经网络的层数称为模型的深度,正是因为这个术语才出现了“深度学习”这个名字。每一层的节点都代表一个神经元(neuron),每层的单元数代表了模型的宽度。
二、感知机相关
1,超平面的定义
令w1,w2,…wn,v都是实数® ,其中至少有一个wi不为零,由所有满足线性方程w1x1+w2x2+…+wn*xn=v
的点X=[x1,x2,…xn]组成的集合,称为空间R的超平面。
从定义可以看出:超平面就是点的集合。集合中的某一点X,与向量w=[w1,w2,…wn]的内积,等于v
特殊地,如果令v等于0,对于训练集中某个点X:
wX=w1x1+w2x2+…+wnxn>0,将X标记为一类
wX=w1x1+w2x2+…+wnxn<0,将X标记为另一类
2,数据集的线性可分
对于数据集T={(X1, y1),(X2, y2)…(XN, yN)},Xi belongs to Rn,yi belongs to {-1, 1},i=1,2,…N
若存在某个超平面S:w*X=0
将数据集中的所有样本点正确地分类,则称数据集T线性可分。
所谓正确地分类,就是:如果w*Xi>0,那么样本点(Xi, yi)中的 yi 等于1
如果w*Xi<0,那么样本点(Xi, yi)中的 yi 等于-1
因此,给定超平面 wX=0,对于数据集 T中任何一个点(Xi, yi),都有yi(wXi)>0,这样T中所有的样本点都被正确地分类了。
如果有某个点(Xi, yi),使得yi(wXi)<0,则称超平面wX对该点分类失败,这个点就是一个误分类的点。
3.感知机模型
f(X)=sign(w*X+b),其中sign是符号函数。
感知机模型,对应着一个超平面w*X+b=0,这个超平面的参数是(w,b),w是超平面的法向量,b是超平面的截距。
我们的目标是,找到一个(w,b),能够将线性可分的数据集T中的所有的样本点正确地分成两类。
如何找到(w,b)?—感知机学习算法做的事
三.激活函数相关
神经元的结构如下图所示,其中f就是激活函数(activation function),它的输入是x的线性组合,然后对其进行某种固定的数学操作后输出到下一个神经元。
常用的神经元激活函数主要有以下几种:
sigmoid
tanh
ReLU
Leaky ReLU
Maxout
ELU
激活函数的用途(为什么要用激活函数)