1x1卷积核虽然不能增加特征的感受野,但仍然常被采用,本文简单介绍它的几点作用。
1x1卷积核的作用和使用场景
- 降低通道数。模型的计算计算量和复杂度与每一层的通道数息息相关,如果想要降低某一层的通道数同时又想对特征进行一次组合,那么就可以采用1x1的卷积核。
- 多通道整合。降低通道数的同事又可以进行一次通道整合,通常见于网络或者块的输出增,特征通过concat之后通常需要一次信息的整合,这个时候就可以采用1x1的卷积核。
- 实现通道数的改变。在某些层中,可能希望实现通道数的增加而不是减少,这个时候又不想增加太多的计算量,就可以采用1x1的卷积核来完成。
博主会持续更新一些深度学习相关的基础知识以及工作中遇到的问题和感悟,喜欢请关注、点赞、收藏,感谢大家。