Android 手机部署whisper 模型

本文介绍了如何在Android设备上部署OpenAI的Whisper自动语音识别模型,利用llama.cpp实现本地高性能推理。详细步骤包括下载代码、配置模型文件、修改编译选项并编译运行。建议使用base或tiny模型,以适应手机资源限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Whisper 是什么?

“Whisper” 是一个由OpenAI开发的开源深度学习模型,专门用于语音识别任务。这个模型能够将语音转换成文本,支持多种语言,并且在处理不同的口音、环境噪音以及跨语言的语音识别方面表现出色。Whisper模型的目标是提供一个高效、准确的工具,以支持自动字幕生成、会议记录、语音命令解析等应用场景。

llama.cpp 是什么?

llama.cpp的主要目标是在本地和云中的各种硬件上,以最小的设置和最先进的性能实现LLM推理。

  • 无任何依赖关系的纯C/C++实现
  • 苹果硅是一流的公民-通过ARM NEON、Accelerate和Metal框架进行优化
  • 支持x86架构的AVX、AVX2和AVX512
  • 1.5位、2位、3位、4位、5位、6位和8位整数量化,用于更快的推理和减少内存使用
  • 用于在NVIDIA GPU上运行LLM的自定义CUDA内核(通过HIP支持AMD GPU)
  • Vulkan、SYCL和(部分)OpenCL后端支持
  • CPU+GPU混合推理,部分加速大于VRAM总容量的模型

whisper cpp 是什么?

OpenAI的Whisper自动语音识别(ASR)模型的高性能推理:

  • 无依赖关系的纯C/C++实现
  • Apple Silicon一流公民-通过ARM NEON、Accelerate框架、Metal和Core ML进行优化
  • 对x86体系结构的AVX内部支持
  • 对POWER体系结构的VSX内部支持
  • F16/
### 如何部署Whisper模型或服务 为了成功部署Whisper模型或服务,可以考虑多种方法和技术栈。以下是几种常见的方案: #### 使用Amazon SageMaker进行细调和部署 一种有效的方法是在AWS环境中利用SageMaker来完成这一目标。具体来说,可以通过一个演示项目展示如何在SageMaker上对Whisper模型进行微调以及部署[^1]。此过程涉及设置必要的基础设施、准备训练数据集、定义超参数配置文件,并最终通过API网关或其他方式公开预测端点。 ```python import boto3 from sagemaker.huggingface import HuggingFaceModel # 创建Hugging Face模型实例 model = HuggingFaceModel( role='arn:aws:iam::account-id:role/service-role/sagemaker-execution-role', transformers_version="4.6", pytorch_version="1.7", py_version="py36" ) # 部署模型至生产环境 predictor = model.deploy(initial_instance_count=1, instance_type='ml.m5.large') ``` #### 本地部署选项——JAX实现 对于那些希望在内部服务器而非云端运行Whisper的情况,则可以选择采用JAX版本的OpenAI Whisper模型来进行加速处理。这种方法能够带来显著性能提升,在某些情况下甚至可达70倍之多。除了官方文档外还有一些社区贡献者提供了详尽的教学资源帮助理解整个流程[^3]。 #### 构建复杂的分布式应用 当面对更加复杂的需求场景时,比如需要集成多个不同类型的机器学习组件形成完整的业务逻辑链路;或者是追求更高的可用性和可扩展性特性之时,就需要引入像Kubernetes这样的现代化平台支持下的微服务体系结构设计思路了。这时可能会遇到诸如跨服务间通讯机制的选择等问题,而[Jina](https://github.com/jina-ai/jina)作为一个专注于简化此类工作的框架或许能提供有价值的参考案例[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zeloas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值