机器学习基石-Training versus Testing

大纲

这里写图片描述

Recap and Preview

下图是到目前为止,我们所能了解到的机器学习的基本流程

这里写图片描述

该流程图说明,用于训练的训练数据 D 和用于测试演算法所选择的最好的假设g的数据都来自同一分布,并且 |H| 是有限的,训练数据 D 应该足够大,根据Hoeffding不等式,出现Bad Sample的几率很小,即Ein(h)Eout(h),这样我们可以通过演算法在训练数据D上,选取最好的 h ,即Ein(h)0,这样我们学习到的函数 h=f 是PAC的,这也是机器学习可学习的前提

这里写图片描述

回顾一下前面四节课所讲到的内容,其实都是层层铺垫的

  • 第一节课,定义了机器学习的目的,即 gf ,也就说让 Eout(g)0

  • 第二节课,我们通过演算法,使 Ein(g)0

  • 第三节课,我们把重心放在批量监督分类问题上,这是机器学习的一个核心问题

  • 第四节课,我们建立起 Eout(g)Ein(g) 的联系,即,在一定的假设条件下, Eout(g)Ein(g)

其实我们可以把机器学习问题总结为两个问题

  • 我们能否使 Ein(g) 足够接近 Eout(g)

  • 我们能否使 Ein(g) 足够小

下面我们看看 M 在这两个问题中的Trade-off

这里写图片描述

  • 当M比较小的时候,Ein(g)足够接近 Eout(g) ,但是我们面临更小的选择,可能找不到合适的 g ,使Ein(g)0

    • 当M比较大的时候,我们可以使 Ein(g)0 ,但是我们不能让 Ein(g) 足够接近 Eout(g)
      所以选择合适的M很重要,在PLA问题中,M的个数无限大,为什么PLA能很好的进行机器学习呢?
    • Effective Number of Lines

      首先我们回顾一下union bound形式的hoffeding不等式

      这里写图片描述

      当M无限大的时候,左边可能会大于1,为什么会发生这种情况?

      这是我们在计算Bad Sample概率的时候,把重叠的部分也算进去了,如下图所示
      这里写图片描述

      因为存在相似的假设, h1h2 ,为了解决这个问题,我们可以把相似的假设归为一类,来计算有效的M

      如何将无限的假设归为有限的类,看下面的例子

      • 一个点的情况

      这里写图片描述

      • 两个点情况
        这里写图片描述

      • 三个点的情况
        这里写图片描述

      • 四个点的情况
        这里写图片描述

      总结一下
      这里写图片描述

      所以我们可以用effective(N)来代替M,因此就有

      P[|Ein(g)Eout(g)|>ϵ]2effective(N)exp(2ϵ2N)

      这里 effective(N)<<2N
      当N很大的时候,右边接近0,所以学习问题是可行的。

      Effective Number of Hypothesis

      一些概念

      首先我们定义两个概念

      • Dichotomies:平面上能将点完全用直线分开的直线种类,它的上界是 2N ,用符号 |H(x1,x2,..xN)| 表示
        这里写图片描述
        我们尝试用 |H(x1,x2,..xN)| 替代M

      • Growth Function:因为 |H(x1,x2,..xN)| 依赖所给的数据 D ,所以我们为了移除这种依赖,定义

        mH(N)=maxx1,x2...xnX|H(x1,x2,..xN)|

      计算成长函数

      我们考虑四种情况

      • Positive Rays
        这里写图片描述
        这里 mH(N)=N+1 ,当N很大的时候, N<<2N

      • Positive intervals
        这里写图片描述
        这里 mH(N)=C2N+1 ,当N很大的时候, N<<2N

      • convex region
        这里写图片描述
        定义这样的 h ,当x在convex region上面时,h(x)=+1,反之为-1.
        为了计算所有情况,我们可以按照以下方式定义x的分布
        这里写图片描述

      很容易算出 mH(N)=2N ,这种情况下,N个点所有可能的分类情况都能够被hypotheses set覆盖,我们把这种情形称为shattered。

      做一个总结

      这里写图片描述

      其中,positive rays和positive intervals的成长函数都是polynomial的,如果用 mH 代替M的话,这两种情况是比较好的。而convex sets的成长函数是exponential的,即等于M,并不能保证机器学习的可行性。那么,对于2D perceptrons,它的成长函数究竟是polynomial的还是exponential的呢?

      Break Point

      定义

      满足 mH(k)2k 的k的最小值就是break point

      举例

      这里写图片描述

      通过观察,我们可以做出一些猜想

      • 没有break point, mH(k)=2K ,这是确定的
      • 如果存在break point。 mH(k)=O(Nk1) (猜想),如果成立的话,这就可以保证机器学习的可行性。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值