当前搜索:

LaTex符号大全(LaTeX_Symbols)

LaTeX:
阅读(6) 评论(0)

安装Hexo时npm install hexo -g 出错

错误如下: 解决方式: it was caused by the ByteFence Anti-malware software. After we uninstalled it, npm works. 重新安装:
阅读(22) 评论(0)

windows下Atom+texlive搭建本地Latex环境

1.下载并安装TexLive(必须,相当于java开发需要安装JDK):http://tug.org/texlive/acquire-netinstall.html 安装时间会有点久,大概需要3点几G的安装包 2.下载并安装atom(由 GitHub 开发的自由及开放源代码的文字和代码编辑器)...
阅读(20) 评论(0)

深度学习-RL增强学习(Reinforcement Learning)

学习李伟老师《深度学习》课程 增强学习基础 增强学习是传统机器学习中已经提出来的问题,主要侧重人机交互/模仿人类和自然交互的能力。 什么是增强学习 传统的深度学习:训练一个模型,然后用来预测、分类、生成图片….,而深度增强学习一开始就是考虑和现实交流的问题,面对不同的情况可...
阅读(230) 评论(0)

深度学习-CNN卷积神经网络-目标分类、迁移学习

学习李伟老师《深度学习》课程 目标分类基本框架 数据准备:数据来源、数据扩充、数据规范 模型设计:模型类型(分类/回归/分类+回归/多目标分类)-> 现有模型->模型设计(局部更改/从头设计) 训练细节:Batch-Size、数据循...
阅读(237) 评论(0)

深度学习-CNN卷积神经网络经典模型:AlexNet、VGG、GoogleNet、ResNet、U-Net

学习李伟老师《深度学习》课程 AlexNet:现代神经网络的起源 基本构成:卷积层+池化层+全连接层 背景 截至 2016 年,ImageNet 中含有超过 1500 万由人手工注释的图片网址,也就是带标签的图片,标签说明了图片中的内容,超过 2.2 万个类别。其中,至少...
阅读(107) 评论(0)

深度学习-CNN卷积神经网络使用TensorFlow框架实现MNIST手写数字识别

学习李伟老师《深度学习》课程 本文GitHub源码及数据下载: https://github.com/YEN-GitHub/DeepLearning_BasicByTensorFlow/tree/master/CNN (不断更新,喜欢可fork) Python代码: ...
阅读(147) 评论(0)

深度学习-传统神经网络使用TensorFlow框架实现MNIST手写数字识别

学习李伟老师《深度学习》课程 本文GitHub源码及数据下载: https://github.com/YEN-GitHub/DeepLearning_BasicByTensorFlow/tree/master/ANN (不断更新,喜欢可fork) TensorFlow简介 ...
阅读(130) 评论(0)

深度学习- win10+Anoconda3-2.4.0+cuda8.0+TensorFlow-GPU+Pycharm2016测试Demo-GPU加速环境配置

前言 本来用的是Python2.7,但最近学习需要用到TensorFlow,TensorFlow支持windows,但tensorflow在windows下只支持python 3.5以上 Anacoda3-4.2.0安装 Anacoda3-4.2.0 Uses python 3.5下...
阅读(298) 评论(0)

深度学习- 卷积神经网络Convolution Nerual Network(CNN)算法

学习彭亮《深度学习进阶:算法与应用》课程 Convolution Nerual Network介绍 目前总体来讲最流行, 表现最好的算法,尤其是对于图像处理方面:Convolution Neural Network (CNN) MNIST结果达到接近人肉眼识别水平: 9,967 ...
阅读(202) 评论(0)

深度学习-训练深度神经网络的难点:vanishing gradient problem与exploding gradient problem

学习彭亮《深度学习进阶:算法与应用》课程 概述 到目前为止, 我们例子中使用的神经网络一共只有3层 (一个隐藏层): 我们用以上神经网络达到了98%的accuracy 更深层的神经网络: 可以学习到不同抽象程度的概念. 如何训练深度神经网络? 难点: 神经网络的不同层...
阅读(207) 评论(0)

深度学习-神经网络参数(hyper-parameters)选择

学习彭亮《深度学习进阶:算法与应用》课程 背景 我们到目前为止在神经网络中使用了好几个参数, hyper-parameters包括: 学习率(learning rate): η Regularization parameter: λ 之前只是设置了一些合适的值, 如何来选择合适...
阅读(157) 评论(0)

深度学习-实现提高版本的手写数字识别算法

学习彭亮《深度学习进阶:算法与应用》课程 用不同的初始化权重方法对比 1.对于隐藏层有30个神经元的对比: (1)之前的方法:N(0,1) N(0,1),即均值为0,方差为1的标准正太分布 import mnist_loader training_data, validati...
阅读(260) 评论(0)

深度学习-L1 Regularization、L2 Regularization、Dropout和人工扩大训练集减少Overfitting

学习彭亮《深度学习进阶:算法与应用》课程 背景 增加训练数据集的量是减少overfitting的途径之一:深度学习-softmax和Overfitting 减小神经网络的规模, 但是更深层更大的网络潜在有更强的学习能力 即使对于固定的神经网络和固定的训练集, 仍然可以减少over...
阅读(181) 评论(0)

深度学习-softmax和Overfitting

学习彭亮《深度学习进阶:算法与应用》课程 Softmax 是另外一种类型的输出层方程: 第一步 (和之前sigmoid一样): 第二步: (和之前sigmoid不同): softmax函数 分母是把所有神经元的输入值加起来 事实上, 其他a减小的值总是刚好等于a4增加...
阅读(151) 评论(0)

深度学习-Cross-Entropy Cost函数来实现MNIST手写数字识别

学习彭亮《深度学习进阶:算法与应用》课程 旧的Cost Funtion 之前的cost Function是一个二元的Function,之前初始化Baise和Weight都是从正态分布里随机初始化。 我们理想情况是让神经网络学习更快,即更快达到我们的学习目标。 假设简单模型(我们已...
阅读(101) 评论(0)

深度学习-Backpropagation算法

学习彭亮《深度学习进阶:算法与应用》课程 Backpropagation的目标 Backpropagation核心解决的问题: ∂C/∂w 和 ∂C/∂b 的计算,;针对cost函数C 符号说明 (1) eg:表示第三层的第二个神经元结点与第3-1层的第四个神经元阶段的...
阅读(137) 评论(0)

深度学习-灰度平均值算法和支持向量机算法(SVM)进行手写数字识别

学习彭亮《深度学习进阶:算法与应用》课程 这两个传统分类器程序只是为了和神经网络算法进行预测的精确度进行对比:深度学习-随机梯度下降算法应用-手写数字识别 官方源码:neural-networks-and-deep-learning 根据灰度平均值进行手写数字识别 #coding=u...
阅读(138) 评论(0)

深度学习-随机梯度下降算法应用-手写数字识别

学习彭亮《深度学习进阶:算法与应用》课程 MNIST数据集: 训练(train) : 50,000 验证(validation): 10,000 测试(test): 10,000 假设使用两层神经网络结构来实现: 完整代码 network.py #codin...
阅读(129) 评论(0)

深度学习-梯度下降(gradient descent)算法概念

学习彭亮《深度学习进阶:算法与应用》课程 背景 Mnist dataset:THE MNIST DATABASE of handwritten digits 中包含60000张28*28的手写数字图片作为训练集,10000张图片作为测试集。 x: 训练输入, 28*28 =...
阅读(76) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 30万+
    积分: 4345
    排名: 8693
    联系方式

    博文主要参考网上资料,视频笔记,结合个人见解,仅供学习、交流使用,如有侵权,请联系博主删除。


    博客专栏
    最新评论