【已更新】2024妈妈杯mathorcup A题详细思路代码 移动通信网络中 PCI 规划问题

截止发帖,已更新a题完整的第一第二问的可运行代码!
并保护详细结果分析,下面跟大家详细介绍下,获取方式见文章最后~

结果展示
在这里插入图片描述
最后得到最优解:
bestx是每个小区的PCI值,bestMR中有三个元胞矩阵,里面分别是冲突、干扰、混淆的MR矩阵,bestf是MR值总和

思路
对于本次的A题而言,首先我们需要弄懂什么是PCI,以及这与小区之间的关系是什么。

首先,根据题目的前两段进行分析可知:
PCI(Physical Cell Identity,物理小区识别码)是在移动通信网络中用于标识不同小区的一个重要参数。它在下行链路层上对各个覆盖小区进行编号,以避免PCI冲突、PCI混淆以及PCI模3干扰等现象。PCI规划的主要目的是优化网络性能,减少物理层的小区间互相干扰(ICI),增加物理下行控制信道(PDCCH)的吞吐量。通过合理的PCI规划,特别是对于基站小区覆盖边缘的用户和发生信号切换的用户,可以有效地降低信号干扰,提升用户的体验。
由于移动通信系统中PCI的数量有限,而小区的数量巨大,因此需要对PCI进行复用,这就带来了PCI资源的合理复用配置的问题。错误的PCI配置方式会显著增加下行网络的ICI,严重影响网络质量。因此,在进行PCI规划时,需要综合考虑同频邻区之间的三种场景:PCI冲突、PCI混淆以及PCI模3干扰,以确保网络的稳定性和性能。
那么,其实换种意思就是说我们需要进行合理规划,使得问题中的2067个小区以及后面全部小区的PCI各类冲突数最少(这里肯定会存在说三种模型的优先级,三种冲突之间肯定会存在说哪一种冲突更为严重,因此需要更加注意减少这类冲突的出现),对于这个问题而言,问题的关键是在构建小区PCI和冲突、干扰、混淆矩阵之间的关系。
因此,对于问题的求解就会变得简单。
问题1:给这2067个小区重新分配PCI,使得这2067个小区之间的冲突MR数、混淆MR数和模3干扰MR数的总和最少。
建立响应面模型:使用附表1中的所有小区的PCI值作为输入,建立三个响应面模型,分别根据冲突、混淆和模3干扰的MR数值,具体计算公式需要按照题目所给的方法进行求解:

那么,大家肯定发现了一个问题,上述计算过程中需要判断是否为邻区、同频邻区、重叠覆盖邻区,因此还需要关注以下内容

优化过程:将三个模型的预测结果组合成一个目标函数,目标函数为冲突、混淆和模3干扰的MR数值之和。然后,使用高效的优化算法,如遗传算法、粒子群优化或模拟退火,寻找使得目标函数最小化的PCI分配方案。
问题2:考虑冲突、混淆和干扰的不同优先级,给这2067个小区重新分配PCI。
优先级考虑:按照问题描述的要求,首先以冲突的MR数为目标函数最小化进行寻优,得到多个最优解或较优解。然后,在这些解中计算混淆的MR数值,挑选几个较优的解。最后,在剩余解中选择干扰的MR数最低的解。
问题3:给这2067个小区重新分配PCI,使得所有可能被影响到的小区间的冲突MR数、混淆MR数和模3干扰MR数的总和最少。
问题4:考虑冲突、混淆和干扰的不同优先级,给这2067个小区重新分配PCI,也是考虑所有可能被影响到的小区间的冲突、混淆和模3干扰。
优先级考虑:与问题2类似,按照冲突、混淆和干扰的优先级顺序,依次进行寻优。首先最小化冲突的MR数,然后最小化混淆的MR数,最后尽量降低模3干扰的MR数。在每个步骤中,选择对应优先级的最优解或较优解。

问题一核心代码:

% 初始化环境
clear
clc
close all

%% 加载数据
Data1 = xlsread('附件1:小区基本信息.xlsx');
Data2 = xlsread('附件2:冲突及干扰矩阵数据.xlsx');
Data3 = xlsread('附件3:混淆矩阵数据.xlsx');

%% 数据处理
% 筛选有效小区
validCells = find(Data1(:,4) == 1);
cellIDs = Data1(validCells, 1); % 小区编号
Frequencies = Data1(validCells, 2); % 频点
PCIs = Data1(validCells, 3); % PCI

% 构建冲突和干扰矩阵
ConflictMatrix = zeros(length(validCells));
InterferenceMatrix = zeros(length(validCells));
for i = 1:size(Data2, 1)
    index1 = find(cellIDs == Data2(i, 1));
    index2 = find(cellIDs == Data2(i, 2));
    if ~isempty(index1) && ~isempty(index2)
        ConflictMatrix(index1, index2) = Data2(i, 3);
        InterferenceMatrix(index1, index2) = Data2(i, 4);
    end
end

% 构建混淆矩阵
ConfusionMatrix = zeros(length(validCells));
for i = 1:size(Data3, 1)
    index1 = find(cellIDs == Data3(i, 1));
    index2 = find(cellIDs == Data3(i, 2));
    if ~isempty(index1) && ~isempty(index2)
        if ConflictMatrix(index1, index2) > 0 || InterferenceMatrix(index1, index2) > 0
            ConfusionMatrix(index1, index2) = Data3(i, 3);
        end
        if ConflictMatrix(index2, index1) > 0 || InterferenceMatrix(index2, index1) > 0
            ConfusionMatrix(index2, index1) = Data3(i, 3);
        end
    end
end
fprintf('Initial total MR value: %d\n', sum(ConflictMatrix(:)) + sum(InterferenceMatrix(:)) + sum(ConfusionMatrix(:)));

% 构建PCI和MR数据模型
PCI_Matrices = cell(length(validCells), 1);
for i = 1:size(ConflictMatrix, 1)
    neighborIDs = find(any([ConflictMatrix(i, :); InterferenceMatrix(i, :)] > 0, 1));
    if ~isempty(neighborIDs)
        PCI_Matrices{i} = [neighborIDs; PCIs(i).*ones(1, length(neighborIDs)); PCIs(neighborIDs)'; ...
                           ConflictMatrix(i, neighborIDs); InterferenceMatrix(i, neighborIDs); ConfusionMatrix(i, neighborIDs)];
    end
end

%% 训练模型
Models = cell(size(PCI_Matrices, 1), 3);
for i = 1:size(PCI_Matrices, 1)
    if ~isempty(PCI_Matrices{i})
        neighborPCIs = PCI_Matrices{i}(3, :);
        MR_conflict = PCI_Matrices{i}(4, :);
        MR_interference = PCI_Matrices{i}(5, :);
        MR_confusion = PCI_Matrices{i}(6, :);
        Models{i, 1} = TreeBagger(10, neighborPCIs', MR_conflict', 'Method', 'regression');
        Models{i, 2} = TreeBagger(10, neighborPCIs', MR_interference', 'Method', 'regression');
        Models{i, 3} = TreeBagger(10, neighborPCIs', MR_confusion', 'Method', 'regression');
    end
end

clearvars -except PCI_Matrices Models PCIs

%% 优化PCI配置使用粒子群优化算法
% 参数设置
populationSize = 20;
iterations = 50;
dimensions = length(PCIs);
learningFactors = [0.6, 0.4];
inertiaWeights = [0.1, 5];
lowerBounds = max(PCIs' - 20, 0);
upperBounds = min(PCIs' + 20, 107);

% 初始化
positions = lhsdesign(populationSize, dimensions) .* (upperBounds - lowerBounds) + lowerBounds;
positions = round(positions);


【腾讯文档】2024妈妈杯助攻合集
https://docs.qq.com/doc/DVWtKSFhTbnJ6Rm9V
  • 24
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千千小屋grow

感谢支持,干杯

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值