概率论与数理统计整理

C n m = n ! m ! ⋅ ( n − m ) ! C_n^m=\frac{n!}{m!·(n-m)!} Cnm=m!(nm)!n!

事件的概率

无放回类题目

P = C 条件一总 条件一取 × C 条件二总 条件二取 C 总 取 × ⋯ × C 条件 N 总 条件 N 取 P=\frac{C_{条件一总}^{条件一取}\times C_{条件二总}^{条件二取}}{C_总^取}\times \dots \times C_{条件N总}^{条件N取} P=CC条件一总条件一取×C条件二总条件二取××C条件N条件N

有放回类题

K K K种颜色的球,代号分别为 A 1 , A 2 , … , A K A_1,A_2,\dots,A_K A1,A2,,AK

抽一次,出现的概率分别为 p 1 , p 2 , … , p k p_1,p_2,\dots,p_k p1,p2,,pk

求摸出各种球的个数分别为 n 1 , n 2 , … , n k n_1,n_2,\dots,n_k n1,n2,,nk
P = ( n 1 + n 2 + ⋯ + n k ) ! n 1 ! n 2 ! … n k ! p 1 n 1 p 2 n 2 … p k n k P=\frac{(n_1+n_2+\dots+n_k)!}{n_1!n_2!\dots n_k!}p_1^{n_1}p_2^{n_2}\dots p_k^{n_k} P=n1!n2!nk!(n1+n2++nk)!p1n1p2n2pknk

条件概率

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac {P(AB)}{P(A)} P(BA)=P(A)P(AB)

全概率公式

A , B … A,B\dots A,B 等个体均可能发生某事,则

P ( 发生某事 ) = P ( A 出现 ) ⋅ P ( A 发生某事 ) + P ( B 出现 ) ⋅ P ( B 发生某事 ) … P(发生某事)=P(A出现)·P(A发生某事)+P(B出现)·P(B发生某事)\dots P(发生某事)=P(A出现)P(A发生某事)+P(B出现)P(B发生某事)

贝叶斯公式

A , B … A,B\dots A,B 等个体均可能发生某事,则

P ( 已知有个体发生某事时,是 A 发生的 ) = P ( A 出现 ) ⋅ P ( A 发生某事 ) P ( 发生某事 ) P(已知有个体发生某事时,是A发生的)=\frac{P(A出现)·P(A发生某事)}{P(发生某事)} P(已知有个体发生某事时,是A发生的)=P(发生某事)P(A出现)P(A发生某事)

一维随机变量

已知 F X ( x ) F_X(x) FX(x) f X ( x ) f_X(x) fX(x)中的一项,求另一项

f X ( x ) = F X ′ ( x ) F X ( x ) = ∫ − ∞ x f X ( x ) d x f_X(x)=F_X^{'}(x)\\ F_X(x)=\int_{-\infty}^{x}f_X(x)dx fX(x)=FX(x)FX(x)=xfX(x)dx

已知 F X ( x ) F_X(x) FX(x) f X ( x ) f_X(x) fX(x)中的一项,求 P P P

P ( a < X < b ) = F X ( b ) − F X ( a ) = ∫ a b f X ( x ) d x P(a<X<b) =F_X(b)-F_X(a)=\int_a^bf_X(x)dx P(a<X<b)=FX(b)FX(a)=abfX(x)dx

F X ( x ) F_X(x) FX(x) F X ( x ) F_X(x) FX(x)含未知数,求未知数

F X ( − ∞ ) , f X ( + ∞ ) = 1 , F 上 ( 分段点 ) = F 下 ( 分段点 ) ∫ − ∞ + ∞ f X ( x ) d x = 1 F_X(-\infty),f_X(+\infty)=1,F_上(分段点)=F_下(分段点)\\ \int_{-\infty}^{+\infty}f_X(x)dx=1 FX(),fX(+)=1,F(分段点)=F(分段点)+fX(x)dx=1

求分布律

列出 X X X所有可能取值,再求出概率,求出一张表

已知含有未知数分布列,求未知数

所有可能概率加起来 = 1 =1 =1

一位随机变量函数

已知 X X X分布列,求 Y Y Y分布列

①:根据 X X X的所有取值,计算 Y Y Y的所有取值

②:将表格里 X X X的那一列对应换成 Y Y Y

已知 F X ( x ) F_X(x) FX(x),求 F Y ( y ) F_Y(y) FY(y)

①:写出 X = ? Y X=?Y X=?Y

②:用 ? y ?y ?y替换 F X ( x ) F_X(x) FX(x)中的 x x x,结果为 F X ( ? y ) F_X(?y) FX(?y)

③:判断 ? y ?y ?y中是否有负号

若有:则 F Y ( y ) = F X ( ? y ) F_Y(y)=F_X(?y) FY(y)=FX(?y)

若无:则 F Y ( y ) = 1 − F X ( ? y ) F_Y(y)=1-F_X(?y) FY(y)=1FX(?y)

已知 f X ( x ) f_X(x) fX(x),求 f Y ( y ) f_Y(y) fY(y)

①:写出 X = ? Y X=?Y X=?Y

②:用 ? y ?y ?y替换 f X ( x ) f_X(x) fX(x)中的 x x x,结果为 f x ( ? y ) f_x(?y) fx(?y)

③:令 f Y = ( ? y ) ′ ⋅ f X ( ? y ) f_Y=(?y)^{'}·f_X(?y) fY=(?y)fX(?y)

④:判断 ? y ?y ?y中是否有负号

若无:则 F Y ( y ) = f Y F_Y(y)=f_Y FY(y)=fY

若有:则 f Y ( y ) = − f Y f_Y(y)=-f_Y fY(y)=fY

五种常见的分布

符合均匀分布,求概率

P = 满足要求长度 总长度 P=\frac{满足要求长度}{总长度} P=总长度满足要求长度

符合泊松分布,求概率

P ( X = x ) = λ x x ! e − λ P(X=x)=\frac{\lambda^x}{x!}e^{-\lambda} P(X=x)=x!λxeλ

符合二项分布,求概率

P ( X = x ) = C n x p x ( 1 − p ) n − x P(X=x)=C_n^xp^x(1-p)^{n-x} P(X=x)=Cnxpx(1p)nx

符合指数分布,求概率

KaTeX parse error: Expected 'EOF', got '&' at position 74: … 0 \end{cases} &̲& \begin{cases}…

符合正态分布,求概率

{ P ( a < X < b ) = ϕ ( b − μ σ ) − ϕ ( a − μ σ ) P ( X < a ) = ϕ ( a − μ σ ) P ( X > b ) = 1 − ϕ ( b − μ σ ) ϕ ( 0 ) = 0.5 \begin{cases} P(a<X<b)=\phi(\frac{b-\mu}{\sigma})-\phi(\frac{a-\mu}{\sigma})\\ P(X<a)=\phi(\frac{a-\mu}{\sigma})\\ P(X>b)=1-\phi(\frac{b-\mu}{\sigma}) \end{cases}\\ \phi(0)=0.5 P(a<X<b)=ϕ(σbμ)ϕ(σaμ)P(X<a)=ϕ(σaμ)P(X>b)=1ϕ(σbμ)ϕ(0)=0.5

标准正态分布就是   ( 0 , 1 ) ~(0,1)  (0,1)

正态分布图像

负号: N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)

①:图像关于 μ \mu μ堆成

②:面积表示概率,总面积为 1 1 1

③: σ \sigma σ越小,图像越陡

常见分布的其他表示方法:

均匀分布: U [ a , b ] 二项分布: B [ n , p ] 指数分布: E ( λ ) 正态分布: N ( μ , σ 2 ) 均匀分布:U[a,b]\\ 二项分布:B[n,p]\\ 指数分布:E(\lambda)\\ 正态分布:N(\mu,\sigma^2) 均匀分布:U[a,b]二项分布:B[n,p]指数分布:E(λ)正态分布:N(μ,σ2)

离散型二维变量

已知二维离散型分布律,求 ? ? ? ??? ???

直接算

已知二维离散型分布律,判断独立性

如果任意 x i , y i x_i,y_i xi,yi均满足 P ( X = x i , Y = y i ) = P ( X = x i ) ⋅ P ( Y = y i ) P(X=x_i,Y=y_i)=P(X=x_i)·P(Y=y_i) P(X=xi,Y=yi)=P(X=xi)P(Y=yi)

那么 X , Y X,Y X,Y相互独立

否则 X , Y X,Y X,Y不相互独立

已知 F ( x , y ) ,求 f ( x , y ) F(x,y),求f(x,y) F(x,y),求f(x,y)

f ( x , y ) = ∂ 2 F ( x , y ) ∂ x ∂ y f(x,y)=\frac{\partial^2F(x,y)}{\partial x\partial y} f(x,y)=xy2F(x,y)

已知 f ( x , y ) f(x,y) f(x,y),求 F ( x , y ) F(x,y) F(x,y)

(1):找出 f ( x , y ) f(x,y) f(x,y)不等于零时 x x x的范围和 y y y的范围

(2):计算 ∫ g 1 ( y ) x d u ∫ h 1 ( u ) y f ( u , v ) d v \int_{g_1(y)}^xdu\int_{h_1(u)}^yf(u,v)dv g1(y)xduh1(u)yf(u,v)dv,结果记为①
g 1 ( y ) 为 x 的左边界 h 1 ( u ) 为将 y 的下边界中的 x 替换为 u 后的式子 f ( u , v ) 为将 f ( x , y ) 中的 x 替换为 u , y 替换为 v 后的式子 g_1(y)为x的左边界\\ h_1(u)为将y的下边界中的x替换为u后的式子 f(u,v)为将f(x,y)中的x替换为u,y替换为v后的式子 g1(y)x的左边界h1(u)为将y的下边界中的x替换为u后的式子f(u,v)为将f(x,y)中的x替换为u,y替换为v后的式子
(3):将 x = g 2 ( y ) 、 y = h 2 ( x ) x=g_2(y)、y=h_2(x) x=g2(y)y=h2(x)分别代入①中,结果依次记为②和③
g 2 ( x ) 为 x 的右边界 h 2 ( x ) 为 y 的上边界 g_2(x)为x的右边界\\ h_2(x)为y的上边界 g2(x)x的右边界h2(x)y的上边界
④:画出 f ( x , y ) f(x,y) f(x,y)不等于零的区域,记为区域 A A A

A A A右侧的区域记为 B B B

A A A上侧的区域记为 C C C

A A A右上方的区域记为 D D D
则 F ( x , y ) = { ① A 区域 ② B 区域 ③ C 区域 1 D 区域 0 其他 则F(x,y)=\begin{cases} ①&A区域\\ ②&B区域\\ ③&C区域\\ 1&D区域\\ 0&其他 \end{cases} F(x,y)= 10A区域B区域C区域D区域其他

已知 F ( x , y ) F(x,y) F(x,y),求 p p p

P ( X ≤ x 0 , Y ≤ y 0 ) = F ( x 0 , y 0 ) P(X\leq x_0,Y\leq y_0)=F(x_0,y_0) P(Xx0,Yy0)=F(x0,y0)

已知 f ( x , y ) f(x,y) f(x,y),求 p p p

(1)找出 f ( x , y ) f(x,y) f(x,y)不等于零时 x x x的范围和 y y y的范围

(2)找出要求概率的范围,添到上一步的范围里

(要保证至少有一个未知数的上下限都是纯数字)

x x x的范围: a ≤ x ≤ b a\leq x\leq b axb

y y y的范围: c ≤ y ≤ d c\leq y\leq d cyd

(3)

如果 x x x的上下限都是纯数字

则: P = ∫ a b d x ∫ c d f ( x , y ) d y P=\int_a^bdx\int_c^df(x,y)dy P=abdxcdf(x,y)dy

如果 y y y的上下限都是纯数字

则: P = ∫ c d d y ∫ a b f ( x , y ) d x P=\int_c^d dy\int_a^bf(x,y)dx P=cddyabf(x,y)dx

F ( x , y ) F(x,y) F(x,y) f ( x , y ) f(x,y) f(x,y)中含有的未知数

如果是求 F ( x , y ) F(x,y) F(x,y),则:
{ F ( + ∞ , + ∞ ) = 1 F ( − ∞ , − ∞ ) = 0 F ( x , − ∞ ) = 0 F ( − ∞ , y ) = 0 \begin{cases} F(+\infty,+\infty)=1\\ F(-\infty,-\infty)=0\\ F(x,-\infty)=0\\ F(-\infty,y)=0 \end{cases} F(+,+)=1F(,)=0F(x,)=0F(,y)=0
如果是求 f ( x , y ) f(x,y) f(x,y),则:
∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dxdy=1 ++f(x,y)dxdy=1

求均匀分布的 f ( x , y ) f(x,y) f(x,y) P P P

f ( x , y ) = { 1 A 当 ( x , y ) ∈ D ( A 为区域 D ) 的面积 0 其他 P [ ( x , y ) ∈ D 1 ] = A 1 A ( A 1 为区域 D 1 与 D 重合部分的面积 ) f(x,y)=\begin{cases} \frac 1 A&当(x,y)\in D(A为区域D)的面积\\ 0&其他 \end{cases}\\ P[(x,y)\in D_1]=\frac{A_1}{A}(A_1为区域D_1与D重合部分的面积) f(x,y)={A10(x,y)D(A为区域D)的面积其他P[(x,y)D1]=AA1(A1为区域D1D重合部分的面积)

连续型二维变量

求边缘分布函数

F X ( X ) = F ( x , + ∞ ) , F Y ( y ) = F ( + ∞ , y ) F_X(X)=F(x,+\infty),F_Y(y)=F(+\infty,y) FX(X)=F(x,+),FY(y)=F(+,y)

求边缘密度函数

(1)将 f ( x , y ) f(x,y) f(x,y)非零的区域画在坐标系上

(2)表示出左边界 x = g 1 ( y ) x=g_1(y) x=g1(y)、右边界 x = g 2 ( y ) x=g_2(y) x=g2(y)、上边界 y = h 1 ( x ) y=h_1(x) y=h1(x),下边界 y = h 2 ( x ) y=h_2(x) y=h2(x)

(3)
f X ( x ) = ∫ h 2 ( x ) h 1 ( x ) f ( x , y ) d y 、 f Y ( y ) = ∫ g 1 ( y ) g 2 ( y ) f ( x , y ) d x f_X(x)=\int_{h_2(x)}^{h_1(x)}f(x,y)dy、f_Y(y)=\int_{g_1(y)}^{g_2(y)}f(x,y)dx fX(x)=h2(x)h1(x)f(x,y)dyfY(y)=g1(y)g2(y)f(x,y)dx

判断连续性二维变量的独立性

F ( x , y ) = F X ( x ) ⋅ F Y ( y ) F(x,y)=F_X(x)·F_Y(y) F(x,y)=FX(x)FY(y),则 X , Y X,Y X,Y相互独立

否则则不相互独立

f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x,y)=f_X(x)·f_Y(y) f(x,y)=fX(x)fY(y),则 X , Y X,Y X,Y相互独立

否则则不相互独立

已知 f ( x , y ) , Z = X + Y f(x,y),Z=X+Y f(x,y),Z=X+Y,求 f Z ( Z ) f_Z(Z) fZ(Z)

f Z ( Z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x f_Z(Z)=\int_{-\infty}^{+\infty}f(x,z-x)dx fZ(Z)=+f(x,zx)dx

已知 f ( x , y ) , Z = X Y f(x,y),Z=\frac X Y f(x,y),Z=YX,求 f Z ( Z ) f_Z(Z) fZ(Z)

f Z ( Z ) = ∫ − ∞ + ∞ f ( y z , y ) ⋅ ∣ y ∣ d y f_Z(Z)=\int_{-\infty}^{+\infty}f(yz,y)·|y|dy fZ(Z)=+f(yz,y)ydy

题干给出 F F F,且 X , Y X,Y X,Y相互独立, Z = m a x ( X , Y ) Z=max(X,Y) Z=max(X,Y),求 F Z ( Z ) F_Z(Z) FZ(Z)

F Z ( z ) = F X ( z ) ⋅ F Y ( z ) F_Z(z)=F_X(z)·F_Y(z) FZ(z)=FX(z)FY(z)

题干给出 F F F,且 X , Y X,Y X,Y相互独立, Z = m i n ( X , Y ) Z=min(X,Y) Z=min(X,Y),求 F Z ( Z ) F_Z(Z) FZ(Z)

F Z ( z ) = 1 − [ 1 − F X ( z ) ] ⋅ [ 1 − F Y ( z ) ] F_Z(z)=1-[1-F_X(z)]·[1-F_Y(z)] FZ(z)=1[1FX(z)][1FY(z)]

随机变量的数字特征

求离散型的期望 E ( X ) E(X) E(X)

E ( X ) = ∑ x i p i E(X)=\sum x_ip_i E(X)=xipi

求连续性的期望 E ( X ) E(X) E(X)

E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx

已知 Y = g ( x ) Y=g(x) Y=g(x),求 E ( Y ) E(Y) E(Y)

离散型: E ( Y ) = ∑ g ( x i ) p i E(Y)=\sum g(x_i)p_i E(Y)=g(xi)pi

连续型: E ( Y ) = ∫ − ∞ + ∞ g ( x ) ⋅ f ( x ) d x E(Y)=\int_{-\infty}^{+\infty}g(x)·f(x)dx E(Y)=+g(x)f(x)dx

求方差 D ( X ) D(X) D(X)

D ( X ) = ∑ [ x i − E ( X ) ] 2 ⋅ p i → D(X)=\sum[x_i-E(X)]^2·p_i \to D(X)=[xiE(X)]2pi离散型

D ( X ) = E ( X 2 ) − E 2 ( X ) → D(X)=E(X^2)-E^2(X) \to D(X)=E(X2)E2(X) 连续型/离散型

根据 E ( X ) , D ( X ) E(X),D(X) E(X),D(X)的性质进行复杂运算

E E E D D D
E ( C ) = C E(C)=C E(C)=C D ( C ) = 0 D(C)=0 D(C)=0
E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X) D ( C X ) = C 2 D ( X ) D(CX)=C^2D(X) D(CX)=C2D(X)
E ( X ± Y ) = E ( X ) ± E ( Y ) E(X\pm Y)=E(X)\pm E(Y) E(X±Y)=E(X)±E(Y) D ( X ± Y ) = D ( X ) + D ( Y ) ( X , Y 相互独立时 ) D(X\pm Y)=D(X)+D(Y)(X,Y相互独立时) D(X±Y)=D(X)+D(Y)(X,Y相互独立时)
E ( X Y ) = E ( X ) E ( Y ) ( X , Y 相互独立时 ) E(XY)=E(X)E(Y)(X,Y相互独立时) E(XY)=E(X)E(Y)(X,Y相互独立时) D ( X ± Y ) = D ( X ) + D ( Y ) ( X , Y 相互独立时 ) D(X\pm Y)=D(X)+D(Y)(X,Y相互独立时) D(X±Y)=D(X)+D(Y)(X,Y相互独立时)

D ( X ) = E ( X 2 ) − E 2 ( X ) D(X)=E(X^2)-E^2(X) D(X)=E(X2)E2(X)

E ( X ) , D ( X ) E(X),D(X) E(X),D(X)与各种分布的综合题

x x x服从的分布 E ( X ) E(X) E(X) D ( X ) D(X) D(X) P P P
二项分布 B ( n , p ) B(n,p) B(n,p) n p np np n p ( 1 − p ) np(1-p) np(1p) P ( X = d ) = C n d p d ( 1 − p ) n − d P(X=d)=C_n^d p^d(1-p)^{n-d} P(X=d)=Cndpd(1p)nd
泊松分布 P ( λ ) P(\lambda) P(λ) λ \lambda λ λ \lambda λ P ( X = d ) = λ d d ! e − λ P(X=d)=\frac{\lambda^d}{d!}e^{-\lambda} P(X=d)=d!λdeλ
均匀分布 U [ a , b ] U[a,b] U[a,b] a + b 2 \frac{a+b}{2} 2a+b ( b − a ) 2 12 \frac{(b-a)^2}{12} 12(ba)2 P ( c ≤ X ≤ d ) = d − c b − a P(c\leq X\leq d)=\frac{d-c}{b-a} P(cXd)=badc
指数分布 E ( λ ) E(\lambda) E(λ) 1 λ \frac{1}{\lambda} λ1 1 λ 2 \frac{1}{\lambda^2} λ21 P ( c ≤ X ≤ d ) = 1 e c λ − 1 e d λ P(c\leq X\leq d)=\frac{1}{e^{c\lambda}}-\frac{1}{e^{d\lambda}} P(cXd)=ecλ1edλ1
正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2 P ( c ≤ X ≤ d ) = Φ ( d − μ σ ) − Φ ( c − μ σ ) P(c\leq X\leq d)=\Phi(\frac{d-\mu}{\sigma})-\Phi(\frac{c-\mu}{\sigma}) P(cXd)=Φ(σdμ)Φ(σcμ)

C o v , ρ X Y , D Cov,\rho_{XY},D Cov,ρXY,D相关类题目

在这里插入图片描述

利用切比雪夫不等式求概率

P [ ∣ X − E ( X ) ∣ ≥ ϵ ] ≤ D ( X ) ϵ 2 P[|X-E(X)|\geq \epsilon]\leq \frac{D(X)}{\epsilon^2} P[XE(X)ϵ]ϵ2D(X)

多项独立同分布,求总和怎样的概率

设共有 n n n项,总和为 Y Y Y,单项的期望为 E ( X ) E(X) E(X),方差为 D ( X ) D(X) D(X),则:
{ P ( a ≤ Y ≤ b ) = Φ ( b − n E ( X ) n D ( X ) ) − Φ ( a − n E ( X ) n D ( X ) ) P ( Y ≥ a ) = 1 − Φ ( a − n E ( X ) n D ( X ) ) P ( Y ≤ b ) = Φ ( b − n E ( X ) n D ( X ) ) \begin{cases} P(a\leq Y\leq b)=\Phi(\frac{b-nE(X)}{\sqrt{nD(X)}})-\Phi(\frac{a-nE(X)}{\sqrt{nD(X)}})\\ P(Y\geq a)=1-\Phi(\frac{a-nE(X)}{\sqrt{nD(X)}})\\ P(Y\leq b)=\Phi(\frac{b-nE(X)}{\sqrt{nD(X)}}) \end{cases} P(aYb)=Φ(nD(X) bnE(X))Φ(nD(X) anE(X))P(Ya)=1Φ(nD(X) anE(X))P(Yb)=Φ(nD(X) bnE(X))

用矩阵估计法进行点估计

求某一未知参数的矩估计

①:写出 E ( X ) E(X) E(X)与待求未知数的关系

②:将①的结果整理成未知数 = ? E ( X ) =?E(X) =?E(X)的形式

③:根据给出的样本,算出实际的 E ( X ) E(X) E(X)

④:求出未知数

在这里插入图片描述

求两个未知参数的矩估计

①:写出 E ( X ) E(X) E(X) E ( X 2 ) = D ( X ) + E 2 ( X ) E(X^2)=D(X)+E^2(X) E(X2)=D(X)+E2(X)同带求未知数的关系

②:将①的结果整理成未知数 = ? E ( X ) + ? + ? E ( X 2 ) =?E(X)+?+?E(X^2) =?E(X)+?+?E(X2)的形式

③:根据给出的样本,算出实际的 E ( X ) E(X) E(X) E ( X 2 ) E(X^2) E(X2)

④:求出未知数

在这里插入图片描述

用最大似然估计进行点估计

求出某离散型参数的最大似然估计量

①:写出 P { X = x 1 } , P { X = x 2 } , … , P { X = x n } P\{X=x_1\},P\{X=x_2\},\ldots,P\{X=x_n\} P{X=x1},P{X=x2},,P{X=xn}

②:依次对①的结果取 l n ln ln

③:依次对②的结果求导

④:令③中结果之和为0$,求出未知数

离散型分布 P P P
二项分布 B ( n , P ) B(n,P) B(n,P) P ( X = d ) = C n d P d ( 1 − P ) n − d P(X=d)=C_n^dP^d(1-P)^{n-d} P(X=d)=CndPd(1P)nd
泊松分布 P ( λ ) P(\lambda) P(λ) P ( X = d ) = λ d d ! e − λ P(X=d)=\frac{\lambda^d}{d!}e^{-\lambda} P(X=d)=d!λdeλ

求出某连续型参数的最大似然估计量

①:写出 f ( x 1 ) , f ( x 2 ) , … , f ( x n ) f(x_1),f(x_2),\ldots,f(x_n) f(x1),f(x2),,f(xn)

②:依次对①的结果取 l n ln ln

③:依次对②的结果求导

④:令③中结果之和为 0 0 0,求出未知数

在这里插入图片描述

区间估计

在这里插入图片描述

假设检验

判断单项参数与某数值关系

在这里插入图片描述

例题:

在这里插入图片描述

判断两项参数间的关系

在这里插入图片描述

例题:

在这里插入图片描述

对于成对数据的检验

①:设出 H 0 , H 1 H_0,H_1 H0,H1(通常,我们猜啥,啥就是 H 1 , H 1 H_1,H_1 H1,H1 H 0 H_0 H0相反)

②:根据表判断是否拒绝 H 0 H_0 H0

假设核实拒绝 H 0 H_0 H0
H 0 : μ D = 0 H_0:\mu_D=0 H0:μD=0
H 1 : μ D ≠ 0 H_1:\mu_D\neq 0 H1:μD=0
$
H 0 : μ D ≤ 0 H_0:\mu_D\leq0 H0:μD0
H 1 : μ D > 0 H_1:\mu_D>0 H1:μD>0
D ‾ S D / n ≥ t α ( n − 1 ) \frac{\overline{D}}{S_D/\sqrt{n}}\geq t_{\alpha}(n-1) SD/n Dtα(n1)
H 0 : μ D ≥ 0 H_0:\mu_D\geq 0 H0:μD0
H 1 : μ D < 0 H_1:\mu_D<0 H1:μD<0
D ‾ S D / n ≤ − t α ( n − 1 ) \frac{\overline{D}}{S_D/\sqrt{n}}\leq- t_{\alpha}(n-1) SD/n Dtα(n1)

例题:

在这里插入图片描述

P值检验

在这里插入图片描述

例题:

在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值