在深度强化学习(DRL)中,特别是在深度Q网络(DQN)算法的实现中,target_dqn.eval()
是一个重要的函数调用,它涉及到模型的两种模式:训练模式(train mode)和评估模式(evaluation mode,或者称为推理模式 inference mode)。
target_dqn.eval()
的作用是将目标DQN网络设置为评估模式。在这种模式下,网络中的某些层(如Dropout层和BatchNormalization层)会改变它们的行为:
-
Dropout层:在训练模式下,Dropout层会随机地将输入张量中的一部分元素设置为0,以防止过拟合。但在评估模式下,Dropout层不会丢弃任何元素,而是会对所有元素进行缩放,以确保输出的总和与训练模式下相同(在统计意义上)。
-
BatchNormalization层:BatchNormalization层在训练时会使用mini-batch的统计数据进行归一化,并使用可学习的缩放(gamma)和偏移(beta)参数进行调整。在评估模式下,BatchNormalization层会使用在训练阶段计算得到的运行均值和运行方差来进行归一化,而不是使用mini-batch的统计数据。
将模型设置为评估模式是很重要的,特别是在进行模型推断或评估模型性能时。如果在进行模型评估或测试时没有将模型设置为评估模式,那么由于Dropout层或BatchNormalization层的行为差异,可能会得到不一致或不可预测的结果。
在DQN算法中,目标DQN网络(target_dqn
)通常用于计算目标Q值,以便稳定学习过程。因此,在计算目标Q值之前,将目标DQN设置为评估模式是很重要的,以确保得到一致且准确的目标值。