PyTorch中to(self.device)在哪一阶段使用

通常来说,to(self.device) 在模型初始化后立即使用,并且在每次处理数据批次之前也要使用,以移动模型、输入数据和目标标签到想要使用的设备上。这样可以确保所有的计算都在同一设备上进行,避免出现设备不一致导致的错误。

模型初始化阶段
在初始化模型之后,应该立即将模型发送到指定的设备。这样可以确保模型的参数和缓存都在正确的设备上。这一步通常在主训练循环开始之前完成。

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')  
model = MyNeuralNetwork()  
model.to(device)

数据处理阶段
在每次将数据送入模型进行前向传播之前,也需要将数据移动到相同的设备上。这通常发生在训练循环或评估循环内部。

#dataloader 是一个提供数据批次的迭代器,inputs 和 targets 是从数据批次中获取的数据和标签。
#inputs.to(device) 和 targets.to(device) 将这些数据移动到与模型相同的设备上。
for batch in dataloader:  
    inputs, targets = batch  
    inputs, targets = inputs.to(device), targets.to(device)  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值