通常来说,to(self.device)
在模型初始化后立即使用,并且在每次处理数据批次之前也要使用,以移动模型、输入数据和目标标签到想要使用的设备上。这样可以确保所有的计算都在同一设备上进行,避免出现设备不一致导致的错误。
模型初始化阶段:
在初始化模型之后,应该立即将模型发送到指定的设备。这样可以确保模型的参数和缓存都在正确的设备上。这一步通常在主训练循环开始之前完成。
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MyNeuralNetwork()
model.to(device)
数据处理阶段:
在每次将数据送入模型进行前向传播之前,也需要将数据移动到相同的设备上。这通常发生在训练循环或评估循环内部。
#dataloader 是一个提供数据批次的迭代器,inputs 和 targets 是从数据批次中获取的数据和标签。
#inputs.to(device) 和 targets.to(device) 将这些数据移动到与模型相同的设备上。
for batch in dataloader:
inputs, targets = batch
inputs, targets = inputs.to(device), targets.to(device)