论文解读 《Enhancing Underwater Imagery using Generative Adversarial Networks》ICRA2018

1.介绍

2.方法    

2.1 生成水下数据集

2.2 对抗生成网络

2.3 网络架构与训练细节

3.方法评估

参考文献:


1.介绍

    本文的主要目的是使用生成对抗网络增强水下图像。

   在Introduction部分,作者提出当前水下机器人逐渐发展,使用视觉引导的AUV和ROV已广泛使用在许多水下任务之中,但是因为光的折射,吸收和悬浮颗粒的散射会极大地影响光学系统。例如,因为红色波长很快被水吸收,水下图像的色彩趋于绿色或蓝色。随着深度的增加,这种效果会恶化,因为越来越多的红色调被吸收。这种失真本质上是非线性的,并受许多因素(例如存在的光量)的影响,例如:光照角度与强度、海水水质、相机参数等等,因此想要获得清晰的水下图像,使用某一个方法不能改善所有的水下图片,这会影响水下机器人在执行分割,追踪以及分类等直接或间接用到颜色特征的任务的准确性。

2.方法    

    基于以上所说的问题,作者提出了一种基于深度学习的图像增强算法。方法流程为:首先使用CycleGAN将清晰的水下图像渲染成模糊的水下图像形成水下图像数据对,然后使用所提出的UNDERWATER GAN(即UGAN)做图像增强。

2.1 生成水下数据集

   因为场景深度,照明条件,相机型号以及在水下环境中的物理位置都会影响图像失真的因素。 在某些条件下,水下图像可能失真很小,或者根本没有失真。 本文将IC设为没有失真的水下图像,将ID设为没有失真的同一图像。 我们的目标是学习功能f:ID→IC。 由于难以收集水下数据,因此不仅存在ID或IC,由于难以收集水下数据,通常IC和ID都有的情况很少,因此为了为了避免图像对不足的问题,本文使用CycleGAN从IC生成ID,从而提供了成对的图像数据集。(CycleGAN的具体内容请见我的下一篇博客)

2.2 对抗生成网络

    在GAN中,其主要任务是生成器G不断生成虚假图片以“欺骗”判别器D,

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值