【论文解读】Unsupervised Single Image Dehazing Using Dark Channel Prior Loss_IEEE TRANS 2018

代码地址https://github.com/AlonaGolts/Deep_Energy

论文地址https://ieeexplore.ieee.org/document/8897130

目录

​ Abstract

​ Introduction

背景

出发点

提出方法

本文贡献:

​ Proposed Method


 Abstract

摘要—单幅图像去雾是当前计算机视觉中的一个重要的研究课题。早期基于先验知识的方法通常包括比较耗时的最小化能量公式问题,最近基于学习的方法利用深度神经网络(DNN)来学习朦胧图像和清晰图像之间的潜在转换。由于收集匹配的清晰和朦胧图像的固有局限性,这些方法诉诸于合成数据的训练。 由室内图像和相应的深度信息构建而成。 在处理室外场景时,这可能会导致域转移。本文提出一种无监督训练方法,不使用合成数据来向网络馈送数据,而是仅使用真实的户外图像并通过直接最小化DCP来调整网络参数。(We propose a completely unsupervised method of training via minimization of the well-known, Dark Channel Prior (DCP) energy function. Instead of feeding the network with synthetic data, we solely use real-world outdoor images and tune the network’s parameters by directly minimizing the DCP)

 Introduction

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值