【论文阅读笔记】Ocean: 目标感知的Anchor-free实时跟踪器,速度70+FPS!刚开源(更新中)

https://mp.weixin.qq.com/s/vLO8xgSooM3aHWEeZS1RrQ
Ocean:目标感知的Anchor-free实时跟踪器,表现SOTA!
性能优于SiamRPN++、DiMP等网络,速度可高达70+ FPS!
论文链接:
https://arxiv.org/pdf/2006.10721.pdf
代码刚刚开源!
https://github.com/researchmm/TracKit
作者团队:中科院&微软

摘要

传统方法的缺点: 值在正样本 anchor boxes 上训练。

本文提出:

1、 一个网络结构: 目标感知无锚框
2、 不微调参考anchor boxex, 直接预测模板 位置和尺度,使用无锚方式。
3、一种特征校准模块, 从预测的bounding box 里面学习预测的 目标。

在这里插入图片描述

Introduction

先介绍了 Siamese 系列 , RPN 的引入, 然后说明了 该系列的重要缺漏。

发现问题:

只关注 anchor 正样本 IoU >=0.6 的, 忽略了 在box 中 , 目标很小的情况。

会跟踪失败, 当分类结果不可信的时候。 例如&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值