SE-SSD

SE-SSD

在这里插入图片描述

Key Knowledgeable:

  1. Teacher-Student SSD
    在这里插入图片描述
    SE-SSD网络核心框架主要包括Teacher SSD和Student SSD两个部分。
    SSD由Voxelization、SPConvNet、BEVConvNet、MT-Head组成。
    Teacher SSD为Student SSD的训练提供soft target:不像groundtruth准确,唯一,过于死板,Teacher 预测的box产生更多信息,更利于student学习。同时Teacher和Student的预测目标相近,利于Student的微调。
    Student SSD为Teacher SSD通过EMA提供参数进行迭代。可以理解为Teacher SSD是Student SSD一段时间内的一个稳定状态。

  2. Conistency Loss
    先通过置信度阈值、Student与Teacherbox之间的IoU阈值过滤不相关的box。
    N为初始的预测box数量,N’为过滤之后的box数量。
    之后计算一致性loss:Student和Teacher预测的loss,以使它们的预测一致。
    一致性loss使用Smooth-L1计算box坐标、大小、角度、分类。均匀优化不同维度的特征。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  3. Orientation-Aware Ditance-IoU Loss
    直接使用SmoothL1计算IoU作为box的loss无法在稀疏的点云数据中得到准确的预测。
    加上额外的两个值作为loss:中心之间的距离与BEV角度上的偏差,提高了预测的性能:
    在这里插入图片描述
    c为中心点距离,d为包含predicted与groundtruth的最小矩形对角线(将c转为相对值),∆r为BEV的角度差。
    1-|cos(∆r)|的曲线图:利于训练过程的快速收敛与缓慢微调。
    在这里插入图片描述
    类别预测与方向预测使用Focal loss 和cross-entropyloss。
    最后总的Student Loss由不同的权重超参数的ODIoU loss、consistency loss组成
    在这里插入图片描述

  4. Data Augmetation
    真实数据可能遇到的遮挡、距离远近变化的大小、形状多样性引起的变化等情况导致某一类别的点云数据发生变化,对训练的点云数据进行一系列操作来模拟这些情况以此提高模型的泛化能力。
    global transformations
    将Teacher SSD提供的soft target,groundtruth提供的hard target进行随机平移、翻转和缩放等操作。
    Shape-Aware Data Augmetation
    将groundtruth box的中心与box的8个点相连,将box内的点划分为6个集合,接下来对以集合为元素进行3个操作:
    I. random dropout
    随机选一个box的一个集合丢弃。

    II .random swap
    随机选一个box的一个集合与另一个box的一个集合进行交换。
    在这里插入图片描述
    III.random sparsifying
    随机选一个box的一个集合FPS采样。
    在这里插入图片描述

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值