3D数学基础:图形和游戏开发(第2版)第4章笔记

4.1节严格地从数学的角度讨论了矩阵的一些基本性质和操作。(更多矩阵运算将在第6章中讨论)
4.2节解释了如何几何解释这些属性和操作。
4.3节将矩阵的使用在本书中更大的线性代数领域。

4.1 矩阵的数学定义

在线性代数中,矩阵是排列成行和列的数字的矩形网格。回想我们前面将向量定义为一维数列的定义,矩阵同样可以定义为二维数列。(“二维数组”中的“二”来自于行和列,不应该与二维向量或矩阵混淆)。所以向量是标量的数组,矩阵是向量的数组。

矩阵元素的下标符号表示
在这里插入图片描述
矩阵的对角元素(diagonal elements)
在这里插入图片描述
如果一个矩阵中所有的非对角元素都为零,那么这个矩阵就是一个对角矩阵(diagonal matrix)。
在这里插入图片描述
一个特殊的对角矩阵是单位矩阵。n维单位矩阵记为在这里插入图片描述,即对角线上的值为1的n × n矩阵,其余元素均为0。
在这里插入图片描述
通常,上下文会明确在特定情况下使用的单位矩阵的维度。在这种情况下,我们省略下标,将单位矩阵简称为I。
单位矩阵对于矩阵来说就像数字1对于标量来说一样。

一个维数为n的矢量可以看成是一个1 ×n的矩阵,也可以看成是一个n × 1的矩阵。一个1 × n的矩阵被称为行向量,一个n × 1的矩阵被称为列向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值