3D数学基础:图形和游戏开发(第2版)第6章笔记


第6.1节介绍了矩阵的行列式。
第6.2节介绍了矩阵的逆。
第6.3节讨论正交矩阵。
第6.4节介绍了齐次向量和4 × 4矩阵,并展示了如何将它们应用于三维执行仿射变换。
第6.5节讨论了透视投影,并展示了如何使用4 × 4矩阵来进行透视投影。

6.1 矩阵的行列式

方型矩阵M的行列式记为| M |,在其他一些书中,记为“det M”。非方阵的行列式没有定义。

2 × 2矩阵的行列式
在这里插入图片描述
3 × 3矩阵的行列式
在这里插入图片描述
如果我们把一个3 × 3矩阵的行解释为三个矢量,那么这个矩阵的行列式就等价于这三个矢量的所谓“三重积”:
在这里插入图片描述

子矩阵行列式:假设M是一个r行c列的矩阵。考虑M中删除第i行和第j列得到的矩阵,这个矩阵显然有r - 1行和c - 1列。这个子矩阵的行列式记为 M { i j } M^{\{ij\}} M{ ij},称为M的子矩阵。
在这里插入图片描述

矩阵的余子式:
C i j = ( − 1 ) i + j M { i j } C^{ij} = (−1)^{i+j}M^{\{ij\}} Cij=(1)i+jM{ ij}
在这里插入图片描述

任意n × n矩阵的行列式(用第i行余子式计算n × n的行列式)
在这里插入图片描述

  • 任意维单位矩阵的行列式为1:| I | = 1
  • 矩阵乘积的行列式等于行列式的乘积:|AB| = |A||B|
  • 矩阵转置的行列式等于原来的行列式: ∣ M T ∣ = ∣ M ∣ |M^T| = |M|
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值