CUDA进行矩阵相乘的两种方式

2022/05/16


(一)目的
掌握利用CUDA进行矩阵相乘的两种方式(全局内存和共享内存)
(二)内容
完成矩阵乘法的并行程序的实现
任务描述:
考虑计算两个大规模的矩阵乘法: C=A*B。其中A的大小为1000×800,B矩阵大小为800×1200,C矩阵大小为1000×1200。矩阵初始化要求如下:
(1)A矩阵的初始化:每一行第1个位置为学号最后1位,以后位置为第1个位置依次加1。
(2)B矩阵的初始化:每一行第1个位置为学号倒数第2位,以后位置为第1个位置依次加1。

实现过程中需要完成如下函数:
(1)int verify_result(int *input, int *ref, int row, int col); //对结果进行的正确性进行校验。其中input为待校验结果(C_gm或者C_sm),ref为正确结果(C_ref);
(2)void MatrixMulCPU(int *p_A, int *p_B, int *p_C, int A_row, int A_col, int B_col); //CPU 串行矩阵乘法,因为C矩阵的row=A矩阵的row,C矩阵的col=B矩阵的col,这里进行了简化只传了A_row, A_col, B_col 三个参数;
(3)void MatrixMul_gm(int *p_A, int *p_B, int *p_C, int A_row, int A_col, int B_col); //GPU global memory矩阵乘法
(4)void MatrixMul_sm(int *p_A, int *p_B, int *p_C, int A_row, int A_col, int B_col); //GPU share memory矩阵乘法。

并行思路:
global memory:使用多个block进行并行计算,但GPU线程访问都是在global memory中。
shared memory :对矩阵A*B=C,用block去划分C矩阵,得到若干个子矩阵p_C。利用分块矩阵乘法公式,在计算某一个p_C时,只取对应的A和B的子块,并读到shared memory中。

CPU代码

int matrixMutilCPU(float* A, float* B, int rowA, int colA, int rowB, int colB, float* C) {
    float tmp;
    if (colA != rowB)
        return -1;
    for (int i = 0; i < rowA; i++) {
        for (int j = 0; j < colB; j++) { //loop for C
            tmp = 0;
            for (int k = 0; k < colA; k++) {
                tmp += (A[colA * i + k] * B[colB * k + j]);
            }
            C[i * colB + j] = tmp;
        }
    }
    return 0;
}

GPU代码

__global__ void matrixMutilGPU(float* A, float* B, int colA, int colB, float* C) {
    int xb = blockIdx.x;
    int yb = blockIdx.y;
    int x = threadIdx.x;
    int y = threadIdx.y;
   
    float* BeginA = A + yb * blockSize * colA;
    float* EndA = BeginA + colA;
    float* BeginB = B + blockSize * xb;
    int stepA = blockSize;
    int stepB = blockSize * colB;

    float tsum = 0;
    //每一个block A和B的子块首地址
    for (; BeginA < EndA; BeginA += stepA, BeginB += stepB) {
        __shared__ float As[blockSize][blockSize];
        __shared__ float Bs[blockSize][blockSize];

        // 每个线程load一个元素到shared mem中
        As[y][x] = *(BeginA + y * colA + x);
        Bs[y][x] = *(BeginB + y * colB + x);
        __syncthreads();//同步
        for (int k = 0; k < blockSize; k++) {
            tsum = tsum + As[y][k] * Bs[k][x];
        }
        __syncthreads();//同步,确保该块内所有线程都完成了计算。下次循环,要重复利用共享内存。
    }
    //写入结果 注意坐标的计算方法
    C[yb * blockSize * colB + y * colB + xb * blockSize + x] = tsum;
}

__global__ void matrixMutilGPU_slow(float* p_A, float*p_ B, int A_col, int B_col, float* A_row) {
    //计算结果矩阵的二维坐标
    int row = blockDim.y * blockIdx.y + threadIdx.y;
    int col = blockDim.x * blockIdx.x + threadIdx.x;
    float tsum = 0;
  
    for (int k = 0; k < B_col; k++) {
        tsum += (p_A [row * A_col + k] * p_B[k * B_col + col]);
    }
    //写入结果
    p_C[row * B_col + col] = tsum;
}

结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值