triplet loss 原理以及梯度推导

本文深入解析Triplet Loss的概念及其在人脸识别等任务中的应用。详细介绍了如何构造三元组(Anchor, Positive, Negative)并利用其进行相似度学习,同时给出了Triplet Loss的目标函数及梯度推导。
摘要由CSDN通过智能技术生成

【前言】 
最近,learning to rank 的思想逐渐被应用到很多领域,比如google用来做人脸识别(faceNet),微软Jingdong Wang 用来做 person-reid 等等。learning to rank中其中重要的一个步骤就是找到一个好的similarity function,而triplet loss是用的非常广泛的一种。

【理解triplet】

这里写图片描述

如上图所示,triplet是一个三元组,这个三元组是这样构成的:从训练数据集中随机选一个样本,该样本称为Anchor,然后再随机选取一个和Anchor (记为x_a)属于同一类的样本和不同类的样本,这两个样本对应的称为Positive (记为x_p)和Negative (记为x_n),由此构成一个(Anchor,Positive,Negative)三元组。

【理解triplet loss】 
有了上面的triplet的概念, triplet loss就好理解了。针对三元组中的每个元素(样本),训练一个参数共享或者不共享的网络,得到三个元素的特征表达,分别记为:这里写图片描述 。triplet loss的目的就是通过学习,让x_a和x_p特征表达之间的距离尽可能小,而x_a和x_n的特征表达之间的距离尽可能大,并且要让x_a与x_n之间的距离和x_a与x_p之间的距离之间有一个最小的间隔这里写图片描述。公式化的表示就是: 
这里写图片描述

对应的目标函数也就很清楚了: 
这里写图片描述 
这里距离用欧式距离度量,+表示[]内的值大于零的时候,取该值为损失,小于零的时候,损失为零。 
由目标函数可以看出:

  • 当x_a与x_n之间的距离 < x_a与x_p之间的距离加这里写图片描述时,[]内的值大于零,就会产生损失。
  • 当x_a与x_n之间的距离 >= x_a与x_p之间的距离加这里写图片描述时,损失为零。

【triplet loss 梯度推导】 
上述目标函数记为L。则当第i个triplet损失大于零的时候,仅就上述公式而言,有: 
这里写图片描述

【算法实现时候的提示】 
可以看到,对x_p和x_n特征表达的梯度刚好利用了求损失时候的中间结果,给的启示就是,如果在CNN中实现 triplet loss layer, 如果能够在前向传播中存储着两个中间结果,反向传播的时候就能避免重复计算。这仅仅是算法实现时候的一个Trick。

下一节给出caffe中实现triplet loss的方法和代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值