前言
本文介绍了Switchable Atrous Convolution(SAConv)及其在YOLOv11中的结合。SAConv是DetectoRS目标检测系统关键组件,将输入特征与不同空洞率卷积,用开关函数组合结果。空洞卷积可扩大滤波器视野,SAC能适应不同对象尺度,开关函数具有空间相关性。在宏观和微观层面分别采用递归特征金字塔和可切换空洞卷积,实现双重观察机制。我们将骨干网络中的标准卷积层转换为SAConv集成进YOLOv11,实验表明这显著提升了目标检测性能。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
许多现代目标检测器通过采用二次观察和思考机制展示了卓越的性能。在本文中,我们在目标检测的主干设计中探索了这一机制。在宏观层面上,我们提出了递归特征金字塔(Recursive Feature Pyramid),该金字塔将特征金字塔网络(Feature Pyramid Networks)的额外反馈连接融入到底层的自下而上主干层中。在微观层面上,我们提出了可切换空洞卷积(Switchable Atrous Convolution),该卷积通过不同的空洞率卷积特征,并使用切换函数汇集结果。结合这些方法,我们提出了DetectoRS,它显著提升了目标检测的性能。在COCO test-dev数据集上,DetectoRS实现了最先进的55.7%的目标检测框AP、48.5%的实例分割掩码AP和50.0%的全景分割PQ。代码已公开发布。
文章链接
论文地址:论文地址
代码地址:
订阅专栏 解锁全文
1347

被折叠的 条评论
为什么被折叠?



