一、前言
什么是非线性
借助胡克定律可以理解线性问题,如一个弹簧单元遵守如下的方程:
F=K×u
结构的变形与受力始终是线性关系,结构的刚度在整个计算过程中不发生变化。但是在非线性问题中,结构的刚度不是一成不变的,它可以随着一些原因发生改变,如下图所示,其中Kt称为切向刚度。
非线性的原因
那么哪些因素会导致结构产生非线性呢,有如下几点:
几何结构发生大变形,从而导致刚度不再符合线性关系,这种情况属于几何非线性;
当材料的应变超过了弹性极限,即应力-应变曲线不再服从线性分布,这种情况属于材料的非线性;
结构的状态变化导致的非线性,这种情况属于接触非线性;
由此可见,有限元分析中的非线性问题可以分为3类,几何非线性,材料非线性与状态/接触非线性,本文主要对几何非线性问题进行详细描述。
二、几何非线性
在介绍几何非线性之前,先了解一下线性问题中的小变形假设,这是弹性力学以及线弹性有限元分析的前提条件。在弹性力学中,小变形假设指物体在外力作用下产生的变形与其本身几何尺寸相比很小,可以不考虑因变形而引起的尺寸变化。这样就可以用变形以前的几何尺寸来建立各种方程,同时应变的二阶分量可以忽略不计,仅为线性表达式。但是,在实际工程中存在很多情况都不符合这种小变形假设,此时应该用变形后的几何尺寸来建立方程,