物理引擎学习04-GJK计算多边形之间的最近距离

本文详细介绍了GJK算法如何用于计算两个不相交多边形之间的最近距离和最近点。通过理解GJK的基本原理,算法伪代码以及关键点,可以有效地找到多边形上的最近边并计算距离。文中还提供了计算最近距离的优化技巧,避免了开方运算,并给出了计算最近点的伪代码。此外,作者提供了Unity3D的Demo工程以供实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算多边形之间的最近距离,才是GJK算法原本的目的。只有两个多边形不相交,计算最近距离才有效。如果相交,则最近距离无效,但是可以使用EPA算法要计算碰撞深度。本文的写作目的,主要是对GJK算法的理解和应用。对算法本身感兴趣的朋友,可以阅读源论文的文献。本系列GJK算法文章共三篇,本篇是第二篇,强烈建议从第一篇开始看:

本文作者游蓝海。原创不易,未经许可,禁止任何形式的转载。

在这里插入图片描述

1. 基本原理

计算多边形之间的距离,本质是在两个多边形上找到距离最近的边,然后计算两个边之间的最近距离。计算最近距离的算法和GJK碰撞检测算法类似,同样使用闵可夫斯基差来构建单形体,使用同样的support函数。当没有发生碰撞的时候,距离原点最近的闵可夫斯基差集多边形的边,就是我们要计算最近距离的关键。为了方便表示,下文将该边称作“差集最近边”。

GJK最近距离算法的两个关键点为:

  • 原点到差集最近边的距离,就是两个多边形之间的最近距离;
  • 构成差集最近边的两个support点,分别来自两个多边形的最近边。因此,通过support点,可以反推出两个多边形的最近边。

需要注意的是,两个多边形最近的位置不一定是边,也可能是顶点。不过这种情况,可以认为是长度为0的特殊边。

2. 算法解析

2.1 算法伪代码

/// 按步骤分解,碰撞检测
public bool GJK(Shape shapeA, Shape shapeB)
{
    Vector2 direction = findFirstDirection();
    simplex.add(support(direction));
    simplex.add(support(-direction));

    direction = -getClosestPointToOrigin(simplex.get(0), simplex.get(1));
    while(true)
    {
        SupportPoint p = support(direction);

        // 新点与之前的点重合了。也就是沿着dir的方向,已经找不到更近的点了。
        if (Vector2.Distance(p.point, simplex.get(0)) == 0 ||
            Vector2.Distance(p.point, simplex.get(1)) == 0)
        {
            break;
        }

        simplex.add(p);
        // 单形体包含原点了
        if (simplex.contains(Vector2.zero))
        {
            return true;
        }

        direction = findNextDirection();
    }

    ComputeClosetPoint();
    return false;
}

该算法与上一章的GJK碰撞检测算法很相似,但有两个细微的差别:

  1. 选择下次的迭代方向不同。上一章用的是原点到直线的垂线作为迭代方向;本章用的是原点到线段的最近向量,作为迭代方向。注意,原点到线段的最近距离不一定就是垂足,可能是线段的某个端点
  2. 不发生碰撞的结束条件不同。上一章迭代算法最终结束时,可能是一个不包含原点的三角形,为了得到差集最近边,我们可以舍弃掉距离原点较远的那个边。这里我们让算法多迭代一次,恰好可以舍弃掉那个点,同时会额外会产生一个重复的support点。因此只要发现support点位置重叠了,就表明迭代算法可以结束了。

计算步骤的分解动图:
在这里插入图片描述

2.2 计算多边形间的最近距离

最近距离就是原点到差集最近边的距离。先求出原点到线段的最近点,然后计算原点到最近点的距离即可。设线段为ab,原点为o,先计算出ao在ab上的投影长度:

  • 如果投影小于0,说明最近点为a点;
  • 如果大于ab的长度,说明最近点为b点;
  • 否则,就在ab之间。

这里有个小技巧,计算投影长度,需要将被投影向量ab单位化,也就是要求ab的长度。但是为了让ao在ab上投影长度单位化到[0, 1]之间,需要额外除以ab的长度,因此计算投影的时候,直接就除以ab长度的平方了,就省去了计算长度时的开方运算。

Vector2 getClosestPointToOrigin(Vector2 a, Vector2 b)
{
    Vector2 ab = b - a;
    Vector2 ao = Vector2.zero - a;

    float sqrLength = ab.sqrMagnitude;

    // ab点重合了
    if(sqrLength < float.Epsilon)
    {
        return a;
    }

	// 计算投影长度,并单位化到[0, 1],需要额外除以ab的长度。因此这里就直接除以长度的平方了。
    float projection = Vector2.Dot(ab, ao) / sqrLength;
    if (projection < 0)
    {
        return a;
    }
    else if (projection > 1.0f)
    {
        return b;
    }
    else
    {
        return a + ab * projection;
    }
}

2.3 计算多边形间的最近点

我们改造一下support方法,每次将生成support点用到的两个顶点也记录下来。这样通过support点,可以反向找回多边形的边。

设是差集最近边为 L = A B L = AB L=AB,A、B是support点,构成A、B两的顶点分别自两个多边形的边 E 1 = A a − B a E1 = Aa - Ba E1=AaBa E 2 = A b − B b E2 = Ab - Bb E2=AbBb。则求两个凸包的最近距离,就演变成了求E1和E2两个边的最近距离。

设Q是原点到L的垂直向量,也就是垂足,则有:
{ L = B − A Q ⋅ L = 0 \begin{cases} L = B - A \\ Q · L = 0 \end{cases} {L=BAQL=0
因为Q是L上的点,可以用 r 1 、 r 2 r1、r2 r1r2来表示 Q Q Q: Q = A ∗ r 1 + B ∗ r 2 Q = A * r1 + B * r2 Q=Ar1+Br2 ,其中 r 1 + r 2 = 1 r1 + r2 = 1 r1+r2=1 。则有:
( A ∗ r 1 + B ∗ r 2 ) ⋅ L = 0 (A * r1 + B * r2) · L = 0 (Ar1+Br2)L=0
r 2 r2 r2代替 r 1 r1 r1 r 1 = 1 − r 2 r1 = 1 - r2 r1=1r2,则有:
( A − A ∗ r 2 + B ∗ r 2 ) ⋅ L = 0 ( A + ( B − A ) ∗ r 2 ) ⋅ L = 0 L ⋅ A + L ⋅ L ∗ r 2 = 0 r 2 = − ( L ⋅ A ) / ( L ⋅ L ) (A - A * r2 + B * r2) · L = 0 \\ (A + (B - A) * r2) · L = 0 \\ L · A + L · L * r2 = 0 \\ r2 = -(L · A) / (L · L) (AAr2+Br2)L=0(A+(BA)r2)L=0LA+LLr2=0r2=(LA)/(LL)

推导过程略显复杂,但是最终的公式却很简单:
{ r 2 = − ( L ⋅ A ) / ( L ⋅ L ) r 1 = 1 − r 2 Q a = A a ∗ r 1 + B a ∗ r 2 Q b = A b ∗ r 1 + B b ∗ r 2 \begin{cases} r2 = -(L · A) / (L · L)\\ r1 = 1 - r2 \\ Qa = Aa * r1 + Ba * r2 \\ Qb = Ab * r1 + Bb * r2 \end{cases} r2=(LA)/(LL)r1=1r2Qa=Aar1+Bar2Qb=Abr1+Bbr2
计算最近点的伪代码如下:


void ComputeClosetPoint()
{
    SupportPoint A = simplex.getSupport(0);
    SupportPoint B = simplex.getSupport(1);

    Vector2 L = B.point - A.point;
    float sqrDistanceL = L.sqrMagnitude;
    // support点重合了
    if (sqrDistanceL < 0.0001f)
    {
        closestOnA = closestOnB = A.point;
    }
    else
    {
        float r2 = -Vector2.Dot(L, A.point) / sqrDistanceL;
        r2 = Mathf.Clamp01(r2);
        float r1 = 1.0f - r2;

        closestOnA = A.fromA * r1 + B.fromA * r2;
        closestOnB = A.fromB * r1 + B.fromB * r2;
    }
}

3. 小结

GJK计算多边形之间的最近距离,本质上是使用GJK算法求得差集最近边。而构成差集最近边的两个support点,就是来自两个多边形的最近边上的4个顶点。然后就将问题转换成,计算两条边之间的最近距离和最近点。

本章Demo使用Unity3D引擎开发,Demo工程已上传github: https://github.com/youlanhai/learn-physics/tree/master/Assets/04-gjk-closest-point

4. 参考

  • GJK算法论文: https://ieeexplore.ieee.org/document/2083?arnumber=2083
  • GJK – Distance & Closest Points: http://www.dyn4j.org/2010/04/gjk-distance-closest-points

本系列文章会和我的个人公众号同步更新,感兴趣的朋友可以关注下我的公众号:游戏引擎学习。扫下面的二维码加关注:
游戏引擎学习

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值