Lec2 Linear Algebra
图形学基础知识
基础数学
- 先行代数,计算,统计学
基础物理
- 光学、力学
其他杂项
- 信号处理
- 数值分析
一点点美学
线性代数
-
向量 Vector
-
是一个方向
-
向量的长度(可以给我们提供单位向量)
-
向量加法
- 平行四边形法则
- 三角形法则
- (图形学中向量缺省是个列向量)
-
向量计算
-
点乘
- a ⃗ ⋅ b ⃗ = ∣ ∣ a ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ c o s θ \vec{a} · \vec{b} = ||\vec{a}||||\vec{b}||cos\theta a⋅b=∣∣a∣∣∣∣b∣∣cosθ
- c o s θ = a ⃗ ⋅ b ⃗ ∣ ∣ a ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ cos\theta = \frac{\vec{a} · \vec{b}} {||\vec{a}||||\vec{b}||} cosθ=∣∣a∣∣∣∣b∣∣a⋅b
- 是一个数字,主要应用是从两个向量得到他们的夹角
- 计算方式
- 2d空间中
- a ⃗ ⋅ b ⃗ = ( x a y a ) ⋅ ( x b y b ) = x a x b + y a y b \vec{a} · \vec{b} = \bigg(\begin{matrix} x_a \\ y_a \end{matrix} \bigg) · \bigg(\begin{matrix} x_b \\ y_b \end{matrix} \bigg) = x_ax_b + y_ay_b a⋅b=(xaya)⋅(xbyb)=xaxb+yayb
- 3d空间中
- a ⃗ ⋅ b ⃗ = ( x a y a z a ) ⋅ ( x b y b z b ) = x a x b + y a y b + z a z b \vec{a} · \vec{b} = \bigg(\begin{matrix} x_a \\ y_a \\ z_a \end{matrix} \bigg) · \bigg(\begin{matrix} x_b \\ y_b \\ z_b \end{matrix} \bigg) = x_ax_b + y_ay_b + z_az_b a⋅b=(xayaza)⋅(xbybzb)=xaxb+yayb+zazb
- 2d空间中
- 应用
- 算投影
- 判断前与后的信息
- 从点乘结果的正负判断两个向量在方向上是否接近
-
叉积
-
a × b = − b × a a \times b = -b \times a a×b=−b×a
-
∣ ∣ a × b ∣ ∣ = ∣ ∣ a ∣ ∣ × ∣ ∣ b ∣ ∣ s i n ϕ ||a \times b|| = ||a|| \times||b|| sin \phi ∣∣a×b∣∣=∣∣a∣∣×∣∣b∣∣sinϕ
-
会得到一个新向量,这个新向量垂直与向量a和向量b
-
新向量方向由右手螺旋定则确定
-
计算方式
- a ⃗ × b ⃗ = ( y a z b − y b z a z a x b − x a z b x a y b − y a x b ) \vec{a} \times \vec{b} = \bigg(\begin{matrix} y_az_b - y_bz_a \\ z_ax_b - x_az_b \\ x_ay_b - y_ax_b \end{matrix} \bigg) a×b=(yazb−ybzazaxb−xazbxayb−yaxb)
- 矩阵形式
- a ⃗ × b ⃗ = A ∗ b = ( 0 − z a y z a 0 − x a − y a x a 0 ) ( x b y b z b ) \vec{a} \times \vec{b} = A * b = \bigg(\begin{matrix} 0&-z_a&y\\ z_a & 0 & -x_a \\ - y_a & x_a & 0 \end{matrix} \bigg) \bigg(\begin{matrix} x_b\\ y_b \\ z_b \end{matrix} \bigg) a×b=A∗b=(0za−ya−za0xay−xa0)(xbybzb)
-
矩阵形式
-
应用
- 可以用它建立直角坐标系的三根轴
- 判断左和右
- 判断内与外
-
-
-
-
矩阵 Matrix
- 矩阵乘积
- 什么是能乘的矩阵
- 第一个矩阵列数等于第二个矩阵的行数
- ( M × N ) ( N × P ) = ( M × P ) (M \times N) (N \times P) = (M \times P) (M×N)(N×P)=(M×P)
- 没有交换率
- 结合律分配律都有
- 矩阵和向量相乘
- 矩阵转置
- 单位矩阵
- 如果两个矩阵不管顺序相乘都能得到单位矩阵,则称他们为互逆矩阵
- 什么是能乘的矩阵
- 矩阵乘积