Lec2 Linear Algebra

Lec2 Linear Algebra

图形学基础知识

基础数学
  • 先行代数,计算,统计学
基础物理
  • 光学、力学
其他杂项
  • 信号处理
  • 数值分析
一点点美学

线性代数

  • 向量 Vector

    • 是一个方向

    • 向量的长度(可以给我们提供单位向量)

    • 向量加法

      • 平行四边形法则
      • 三角形法则
      • (图形学中向量缺省是个列向量)
    • 向量计算

      • 点乘

        • a ⃗ ⋅ b ⃗ = ∣ ∣ a ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ c o s θ \vec{a} · \vec{b} = ||\vec{a}||||\vec{b}||cos\theta a b =a b cosθ
        • c o s θ = a ⃗ ⋅ b ⃗ ∣ ∣ a ⃗ ∣ ∣ ∣ ∣ b ⃗ ∣ ∣ cos\theta = \frac{\vec{a} · \vec{b}} {||\vec{a}||||\vec{b}||} cosθ=a b a b
        • 是一个数字,主要应用是从两个向量得到他们的夹角
        • 计算方式
          • 2d空间中
            • a ⃗ ⋅ b ⃗ = ( x a y a ) ⋅ ( x b y b ) = x a x b + y a y b \vec{a} · \vec{b} = \bigg(\begin{matrix} x_a \\ y_a \end{matrix} \bigg) · \bigg(\begin{matrix} x_b \\ y_b \end{matrix} \bigg) = x_ax_b + y_ay_b a b =(xaya)(xbyb)=xaxb+yayb
          • 3d空间中
            • a ⃗ ⋅ b ⃗ = ( x a y a z a ) ⋅ ( x b y b z b ) = x a x b + y a y b + z a z b \vec{a} · \vec{b} = \bigg(\begin{matrix} x_a \\ y_a \\ z_a \end{matrix} \bigg) · \bigg(\begin{matrix} x_b \\ y_b \\ z_b \end{matrix} \bigg) = x_ax_b + y_ay_b + z_az_b a b =(xayaza)(xbybzb)=xaxb+yayb+zazb
        • 应用
          • 算投影
          • 判断前与后的信息
          • 从点乘结果的正负判断两个向量在方向上是否接近
      • 叉积

        • a × b = − b × a a \times b = -b \times a a×b=b×a

        • ∣ ∣ a × b ∣ ∣ = ∣ ∣ a ∣ ∣ × ∣ ∣ b ∣ ∣ s i n ϕ ||a \times b|| = ||a|| \times||b|| sin \phi a×b=a×bsinϕ

        • 会得到一个新向量,这个新向量垂直与向量a和向量b

        • 新向量方向由右手螺旋定则确定

        • 计算方式

          • a ⃗ × b ⃗ = ( y a z b − y b z a z a x b − x a z b x a y b − y a x b ) \vec{a} \times \vec{b} = \bigg(\begin{matrix} y_az_b - y_bz_a \\ z_ax_b - x_az_b \\ x_ay_b - y_ax_b \end{matrix} \bigg) a ×b =(yazbybzazaxbxazbxaybyaxb)
          • 矩阵形式
            • a ⃗ × b ⃗ = A ∗ b = ( 0 − z a y z a 0 − x a − y a x a 0 ) ( x b y b z b ) \vec{a} \times \vec{b} = A * b = \bigg(\begin{matrix} 0&-z_a&y\\ z_a & 0 & -x_a \\ - y_a & x_a & 0 \end{matrix} \bigg) \bigg(\begin{matrix} x_b\\ y_b \\ z_b \end{matrix} \bigg) a ×b =Ab=(0zayaza0xayxa0)(xbybzb)
        • 矩阵形式

        • 应用

          • 可以用它建立直角坐标系的三根轴
          • 判断左和右
          • 判断内与外
  • 矩阵 Matrix

    • 矩阵乘积
      • 什么是能乘的矩阵
        • 第一个矩阵列数等于第二个矩阵的行数
        • ( M × N ) ( N × P ) = ( M × P ) (M \times N) (N \times P) = (M \times P) (M×N)(N×P)=(M×P)
      • 没有交换率
      • 结合律分配律都有
      • 矩阵和向量相乘
      • 矩阵转置
      • 单位矩阵
      • 如果两个矩阵不管顺序相乘都能得到单位矩阵,则称他们为互逆矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值