【OpenCV 例程300篇】48. 直方图处理之彩色直方图匹配

本文介绍了OpenCV中如何进行彩色图像的直方图匹配,通过匹配模板图像的直方图分布,调整原始图像的色彩风格。直方图匹配包括计算直方图、累积分布函数、反变换等步骤,最终实现图像色调的一致性。示例代码展示了从计算直方图到匹配输出的完整过程。
摘要由CSDN通过智能技术生成

『youcans 的 OpenCV 例程300篇 - 总目录』


【youcans 的 OpenCV 例程300篇】48. 直方图处理之彩色直方图匹配


图像直方图是反映图像像素分布的统计表。 灰度直方图是图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数。

直方图匹配又称为直方图规定化,是指将图像的直方图调整为规定的形状。 例如,将一幅图像或某一区域的直方图匹配到另一幅影像上,使两幅影像的色调保持一致。

这就需要在直方图均衡的基础上,再进行一次反变换,将均匀形状的直方图调整为规定的形状。

直方图匹配的主要步骤为:

(1)通过规定图像 z 的直方图 p z ( z ) p_z(z) pz(z),计算其直方图均衡变换的 s k s_k sk

(2)通过 s k s_k sk 计算图像 z 的直方图均衡变换函数 G G G G ( z q ) = s k G(z_q)=s_k G(zq)=sk

(3)计算变换函数 G G G 的逆变换函数 G − 1 G^{-1} G1 z q = G − 1 ( s k ) z_q=G^{-1}(s_k) zq=G1(sk)

(4)对输入图像 r 进行直方图均衡得到均衡图像 s,然后再用逆变换函数 G − 1 G^{-1} G1 将其映射到 p z ( z ) p_z(z) pz(z),得到直方图匹配图像 z。本步骤中的两次变换,也可以合并为一次完成。

OpenCV 对于彩色图像的直方图匹配,需要对各个颜色通道分别进行运算。

例程 1.60 通过进行彩色图像的直方图匹配,使初始图像 Gaia 的直方图分布,调整到近似模板图像 Lena 的分布,从而具有 Lena 图像的色彩风格。


例程:1.60 彩色图像直方图匹配

    # 1.60 彩色图像的直方图匹配

    img = cv2.imread("../images/imgGaia.tif", flags=1)  # flags=1 读取为彩色图像
    imgRef = cv2.imread("../images/imgLena.tif", flags=1)  # 匹配模板图像 (matching template)

    _, _, channel = img.shape
    imgOut = np.zeros_like(img)
    for i in range(channel):
        print(i)
        histImg, _ = np.histogram(img[:,:,i], 256)  # 计算原始图像直方图
        histRef, _ = np.histogram(imgRef[:,:,i], 256)  # 计算匹配模板直方图
        cdfImg = np.cumsum(histImg)  # 计算原始图像累积分布函数 CDF
        cdfRef = np.cumsum(histRef)  # 计算匹配模板累积分布函数 CDF
        for j in range(256):
            tmp = abs(cdfImg[j] - cdfRef)
            tmp = tmp.tolist()
            index = tmp.index(min(tmp))  # find the smallest number in tmp, get the index of this number
            imgOut[:,:,i][img[:,:,i]==j] = index

    fig = plt.figure(figsize=(10,7))
    plt.subplot(231), plt.title("Original image"), plt.axis('off')
    plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # 显示原始图像
    plt.subplot(232), plt.title("Matching template"), plt.axis('off')
    plt.imshow(cv2.cvtColor(imgRef, cv2.COLOR_BGR2RGB))  # 显示匹配模板
    plt.subplot(233), plt.title("Matching output"), plt.axis('off')
    plt.imshow(cv2.cvtColor(imgOut, cv2.COLOR_BGR2RGB))  # 显示匹配结果
    histImg, bins = np.histogram(img.flatten(), 256)  # 计算原始图像直方图
    plt.subplot(234, yticks=[]), plt.bar(bins[:-1], histImg)
    histRef, bins = np.histogram(imgRef.flatten(), 256)  # 计算匹配模板直方图
    plt.subplot(235, yticks=[]), plt.bar(bins[:-1], histRef)
    histOut, bins = np.histogram(imgOut.flatten(), 256)  # 计算匹配结果直方图
    plt.subplot(236, yticks=[]), plt.bar(bins[:-1], histOut)
    plt.show()

在这里插入图片描述

(本节完)


版权声明:

youcans@xupt 原创作品,转载必须标注原文链接

Copyright 2021 youcans, XUPT

Crated:2021-11-25


欢迎关注 『OpenCV 例程200篇』 系列,持续更新中
欢迎关注 『Python小白的OpenCV学习课』 系列,持续更新中

【OpenCV 例程200篇】01. 图像的读取(cv2.imread)
【OpenCV 例程200篇】02. 图像的保存(cv2.imwrite)
【OpenCV 例程200篇】03. 图像的显示(cv2.imshow)
【OpenCV 例程200篇】04. 用 matplotlib 显示图像(plt.imshow)
【OpenCV 例程200篇】05. 图像的属性(np.shape)
【OpenCV 例程200篇】06. 像素的编辑(img.itemset)
【OpenCV 例程200篇】07. 图像的创建(np.zeros)
【OpenCV 例程200篇】08. 图像的复制(np.copy)
【OpenCV 例程200篇】09. 图像的裁剪(cv2.selectROI)
【OpenCV 例程200篇】10. 图像的拼接(np.hstack)
【OpenCV 例程200篇】11. 图像通道的拆分(cv2.split)
【OpenCV 例程200篇】12. 图像通道的合并(cv2.merge)
【OpenCV 例程200篇】13. 图像的加法运算(cv2.add)
【OpenCV 例程200篇】14. 图像与标量相加(cv2.add)
【OpenCV 例程200篇】15. 图像的加权加法(cv2.addWeight)
【OpenCV 例程200篇】16. 不同尺寸的图像加法
【OpenCV 例程200篇】17. 两张图像的渐变切换
【OpenCV 例程200篇】18. 图像的掩模加法
【OpenCV 例程200篇】19. 图像的圆形遮罩
【OpenCV 例程200篇】20. 图像的按位运算
【OpenCV 例程200篇】21. 图像的叠加
【OpenCV 例程200篇】22. 图像添加非中文文字
【OpenCV 例程200篇】23. 图像添加中文文字
【OpenCV 例程200篇】23. 图像添加中文文字
【OpenCV 例程200篇】24. 图像的仿射变换
【OpenCV 例程200篇】25. 图像的平移
【OpenCV 例程200篇】26. 图像的旋转(以原点为中心)
【OpenCV 例程200篇】27. 图像的旋转(以任意点为中心)
【OpenCV 例程200篇】28. 图像的旋转(直角旋转)
【OpenCV 例程200篇】29. 图像的翻转(cv2.flip)
【OpenCV 例程200篇】30. 图像的缩放(cv2.resize)
【OpenCV 例程200篇】31. 图像金字塔(cv2.pyrDown)
【OpenCV 例程200篇】32. 图像的扭变(错切)
【OpenCV 例程200篇】33. 图像的复合变换
【OpenCV 例程200篇】34. 图像的投影变换
【OpenCV 例程200篇】35. 图像的投影变换(边界填充)
【OpenCV 例程200篇】36. 直角坐标与极坐标的转换
【OpenCV 例程200篇】37. 图像的灰度化处理和二值化处理
【OpenCV 例程200篇】38. 图像的反色变换(图像反转)
【OpenCV 例程200篇】39. 图像灰度的线性变换
【OpenCV 例程200篇】40. 图像分段线性灰度变换
【OpenCV 例程200篇】41. 图像的灰度变换(灰度级分层)
【OpenCV 例程200篇】42. 图像的灰度变换(比特平面分层)
【OpenCV 例程200篇】43. 图像的灰度变换(对数变换)
【OpenCV 例程200篇】44. 图像的灰度变换(伽马变换)
【OpenCV 例程200篇】45. 图像的灰度直方图
【OpenCV 例程200篇】46. 直方图均衡化
【OpenCV 例程200篇】47. 图像增强—直方图匹配
【OpenCV 例程200篇】48. 图像增强—彩色直方图匹配
【OpenCV 例程200篇】49. 图像增强—局部直方图处理
【OpenCV 例程200篇】50. 图像增强—直方图统计量图像增强
【OpenCV 例程200篇】51. 图像增强—直方图反向追踪
【OpenCV 例程200篇】52. 图像的相关与卷积运算
【OpenCV 例程200篇】53. Scipy 实现图像二维卷积
【OpenCV 例程200篇】54. OpenCV 实现图像二维卷积
【OpenCV 例程200篇】55. 可分离卷积核
【OpenCV 例程200篇】56. 低通盒式滤波器
【OpenCV 例程200篇】57. 低通高斯滤波器
【OpenCV 例程200篇】58. 非线性滤波—中值滤波
【OpenCV 例程200篇】59. 非线性滤波—双边滤波
【OpenCV 例程200篇】60. 非线性滤波—联合双边滤波
【OpenCV 例程200篇】61. 导向滤波(Guided filter)
【OpenCV 例程200篇】62. 图像锐化——钝化掩蔽
【OpenCV 例程200篇】63. 图像锐化——Laplacian 算子
【OpenCV 例程200篇】64. 图像锐化——Sobel 算子
【OpenCV 例程200篇】65. 图像锐化——Scharr 算子
【OpenCV 例程200篇】66. 图像滤波之低通/高通/带阻/带通
【OpenCV 例程200篇】67. 空间域图像增强的综合应用
【OpenCV 例程200篇】68. 空间域图像增强的综合应用
【OpenCV 例程200篇】69. 连续非周期信号的傅立叶系数
【OpenCV 例程200篇】70. 一维连续函数的傅里叶变换
【OpenCV 例程200篇】71. 连续函数的取样
【OpenCV 例程200篇】72. 一维离散傅里叶变换
【OpenCV 例程200篇】73. 二维连续傅里叶变换
【OpenCV 例程200篇】74. 图像的抗混叠
【OpenCV 例程200篇】75. Numpy 实现图像傅里叶变换
【OpenCV 例程200篇】76. OpenCV 实现图像傅里叶变换
【OpenCV 例程200篇】77. OpenCV 实现快速傅里叶变换
【OpenCV 例程200篇】78. 频率域图像滤波基础
【OpenCV 例程200篇】79. 频率域图像滤波的基本步骤
【OpenCV 例程200篇】80. 频率域图像滤波详细步骤
【OpenCV 例程200篇】81. 频率域高斯低通滤波器
【OpenCV 例程200篇】82. 频率域巴特沃斯低通滤波器
【OpenCV 例程200篇】83. 频率域低通滤波:印刷文本字符修复
【OpenCV 例程200篇】84. 由低通滤波器得到高通滤波器
【OpenCV 例程200篇】85. 频率域高通滤波器的应用
【OpenCV 例程200篇】86. 频率域滤波应用:指纹图像处理
【OpenCV 例程200篇】87. 频率域钝化掩蔽
【OpenCV 例程200篇】88. 频率域拉普拉斯高通滤波
【OpenCV 例程200篇】89. 带阻滤波器的传递函数
【OpenCV 例程200篇】90. 频率域陷波滤波器
【OpenCV 例程200篇】91. 高斯噪声、瑞利噪声、爱尔兰噪声
【OpenCV 例程200篇】92. 指数噪声、均匀噪声、椒盐噪声
【OpenCV 例程200篇】93. 噪声模型的直方图
【OpenCV 例程200篇】94. 算术平均滤波器
【OpenCV 例程200篇】95. 几何均值滤波器
【OpenCV 例程200篇】96. 谐波平均滤波器
【OpenCV 例程200篇】97. 反谐波平均滤波器
【OpenCV 例程200篇】98. 统计排序滤波器
【OpenCV 例程200篇】99. 修正阿尔法均值滤波器
【OpenCV 例程200篇】100. 自适应局部降噪滤波器

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

youcans_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值