《矩阵理论》大萌课程笔记 - 特征值与特征向量

《矩阵理论》大萌课程笔记 - 特征值与特征向量


总目录

章节名称与链接
线性空间与线性变换线性空间与子空间
有限维线性空间、基、维数
线性变换
内积空间
特征值与特征向量
特殊矩阵
矩阵分解
矩阵函数

声明

  本专栏博客用于记录上海交通大学研究生课程《矩阵理论》笔记,课程任教老师为邓大萌老师。所有内容均为博主个人的课堂笔记,包括课堂例题与证明。如有不妥、错误之处欢迎大家指正。



1 不变子空间

1.1 定义与性质

定义:对于有限维线性空间V有, σ ∈ L ( V ) , U ∈ V , ∀ α ∈ U , σ ( α ) ∈ U \sigma\in L(V), U\in V, \forall \alpha\in U,\sigma(\alpha)\in U σL(V),UV,αU,σ(α)U,则称 U U U V V V σ \sigma σ下的不变子空间。

对于任意非空线性空间 V , σ ∈ L ( V ) V,\sigma\in L(V) V,σL(V)

例1: { 0 } \{0\} {0} V V V的不变子空间

例2: V V V自身是其不变子空间

例3: n u l l   σ null\ \sigma null σ V V V的不变子空间

例4: r a n g e   σ range\ \sigma range σ V V V的不变子空间

性质

  • 对于 σ ∈ L ( V ) , σ 在 V 的 一 组 基 ( α 1 , α 2 , . . . , α n ) 下 的 矩 阵 为 \sigma\in L(V),\sigma在V的一组基(\alpha_1,\alpha_2,...,\alpha_n)下的矩阵为 σL(V),σV(α1,α2,...,αn)分块对角阵

1.2 与不变子空间有关的特殊线性变换

对于 σ ∈ L ( V ) , U 是 V 在 σ 下 的 不 变 子 空 间 \sigma\in L(V), U是V在\sigma下的不变子空间 σL(V),UVσ

  • 不变子空间下的线性变换

定义 σ \sigma σ U U U下的变换 σ ∣ U ∈ L ( U ) , ∀ α ∈ U , σ ∣ U ( α ) = σ ( α ) \sigma|_U\in L(U),\forall\alpha\in U,\sigma|_U(\alpha)=\sigma(\alpha) σUL(U),αU,σU(α)=σ(α)

  • 商变换

定义 σ / U ∈ L ( V / U ) , ∀ α ∈ V , α + U ∈ V / U , ( σ / U ) ( α + U ) = σ ( α ) + U \sigma/U\in L(V/U),\forall \alpha\in V,\alpha+U\in V/U,(\sigma/U)(\alpha+U)=\sigma(\alpha)+U σ/UL(V/U),αV,α+UV/U,(σ/U)(α+U)=σ(α)+U为商变换。

2 特征值与特征向量

2.1 定义与性质

定义:对于 σ ∈ L ( V ) , U \sigma\in L(V),U σL(V),U V V V的一维不变子空间,则 U = S p a n ( α ) , σ ( α ) ∈ U ⇒ σ ( α ) = λ ⋅ α , 其 中 λ 是 特 征 值 , α 是 特 征 向 量 U=Span(\alpha),\sigma(\alpha)\in U\Rightarrow\sigma(\alpha)=\lambda\cdot\alpha,其中\lambda是特征值,\alpha是特征向量 U=Span(α),σ(α)Uσ(α)=λα,λα

例1:对于 P [ R ] → P [ R ] P[R]\rightarrow P[R] P[R]P[R]的线性变换, σ ( f ) = f ′ \sigma(f)=f' σ(f)=f,求特征值与特征向量。

​ 解: σ ( f ) = f ′ = λ ⋅ f ⇒ λ = 0 , f = P 0 [ R ] \sigma(f)=f'=\lambda\cdot f\Rightarrow\lambda=0,f=P_0[R] σ(f)=f=λfλ=0,f=P0[R]

例2:对于 R 3 → R 3 , σ ( ( x , y , z ) ) = ( x , 2 y , 3 z ) R^3\rightarrow R^3, \sigma((x,y,z))=(x,2y,3z) R3R3,σ((x,y,z))=(x,2y,3z)

​ 解:根据定义, { x = λ ⋅ x 2 y = λ ⋅ y 3 z = λ ⋅ z   ⇒ { λ = 1 , α = ( 1 , 0 , 0 ) λ = 2 , α = ( 0 , 1 , 0 ) λ = 3 , α = ( 0 , 0 , 1 ) \begin{cases} x=\lambda\cdot x\\ 2y=\lambda\cdot y\\3z=\lambda\cdot z \end{cases}\ \Rightarrow \begin{cases}\lambda=1,\alpha=(1,0,0)\\\lambda=2,\alpha=(0,1,0)\\\lambda=3,\alpha=(0,0,1)\end{cases} x=λx2y=λy3z=λz λ=1,α=(1,0,0)λ=2,α=(0,1,0)λ=3,α=(0,0,1)

例3:对于 R 2 → R 2 , σ ( ( x , y ) ) = ( − y , x ) R^2\rightarrow R^2 ,\sigma((x,y))=(-y,x) R2R2,σ((x,y))=(y,x),判断是否有特征值。

​ 解:根据定义, { − y = λ ⋅ x x = λ ⋅ y   ⇒ λ 2 = − 1 \begin{cases}-y=\lambda\cdot x\\x=\lambda\cdot y\end{cases}\ \Rightarrow \lambda ^2=-1 {y=λxx=λy λ2=1,在实数域内无解。

​ 若是复数域,则有特征值 λ = + i   o r   − i \lambda=+i\ or\ -i λ=+i or i

性质:

以下命题等价:

  • λ \lambda λ α \alpha α的特征值
  • σ − λ ⋅ I \sigma-\lambda\cdot I σλI是非单射线性变换
  • σ − λ ⋅ I \sigma-\lambda\cdot I σλI是非满射线性变换
  • σ − λ ⋅ I \sigma-\lambda\cdot I σλI非可逆

证明:

1) λ \lambda λ α \alpha α的特征值 ⇒ σ − λ ⋅ I \Rightarrow \sigma-\lambda\cdot I σλI是非单射

λ \lambda λ α \alpha α的特征值 ⇒ σ ( α ) = λ ⋅ α ⇒ σ ( α ) − λ ⋅ I ( α ) = 0 ⇒ ( σ − λ ⋅ I ) ( α ) = 0 \Rightarrow \sigma(\alpha)=\lambda\cdot \alpha\Rightarrow \sigma(\alpha)-\lambda\cdot I(\alpha)=0\Rightarrow(\sigma-\lambda\cdot I)(\alpha)=0 σ(α)=λασ(α)λI(α)=0(σλI)(α)=0

⇒ α ∈ n u l l   ( σ − λ ⋅ I ) ≠ { 0 } ⇒ σ − λ ⋅ I 非 单 射 \Rightarrow \alpha \in null\ (\sigma-\lambda\cdot I)\not=\{0\}\Rightarrow\sigma-\lambda\cdot I非单射 αnull (σλI)={0}σλI

2) σ − λ ⋅ I \sigma-\lambda\cdot I σλI是非单射线性变换$\Rightarrow $ σ − λ ⋅ I \sigma-\lambda\cdot I σλI是非满射线性变换

σ − λ ⋅ I \sigma-\lambda\cdot I σλI是非单射线性变换且 σ \sigma σ V → V V \rightarrow V VV的映射$\Rightarrow $ σ − λ ⋅ I \sigma-\lambda\cdot I σλI是非满射线性变换

3)非单射非满射推出非可逆显然成立

例1: σ ∈ L ( V ) , F = C , d i m ( V ) = n , 证 σ 一 定 存 在 特 征 值 \sigma\in L(V),F=C,dim(V)=n,证\sigma一定存在特征值 σL(V),F=C,dim(V)=nσ

证明:取 α ≠ 0 , α ∈ V \alpha\not=0,\alpha\in V α=0,αV,则有 α , σ ( α ) , σ ( α 2 ) , . . . , σ ( α n ) \alpha,\sigma(\alpha),\sigma(\alpha^2),...,\sigma(\alpha^n) α,σ(α),σ(α2),...,σ(αn)线性相关

⇒ a 0 ⋅ α + a 1 ⋅ σ ( α ) + a 2 ⋅ σ 2 ( α ) + . . . + a n ⋅ σ n ( α ) = 0 \Rightarrow a_0\cdot\alpha+a_1\cdot\sigma(\alpha)+a_2\cdot\sigma^2(\alpha)+...+a_n\cdot\sigma^n(\alpha)=0 a0α+a1σ(α)+a2σ2(α)+...+anσn(α)=0

⇒ ( a 0 ⋅ I + a 1 ⋅ σ + a 2 ⋅ σ 2 + . . . + a n ⋅ σ n ) ( α ) = 0 \Rightarrow (a_0\cdot I+a_1\cdot \sigma+a_2\cdot\sigma^2+...+a_n\cdot\sigma^n)(\alpha)=0 (a0I+a1σ+a2σ2+...+anσn)(α)=0

⇒ C ⋅ ( σ − x 1 I ) ( σ − x 2 I ) . . . ( σ − x m I ) ( α ) = 0 \Rightarrow C\cdot(\sigma-x_1I)(\sigma-x_2I)...(\sigma-x_mI)(\alpha)=0 C(σx1I)(σx2I)...(σxmI)(α)=0,假设最高次为 m m m

⇒ 存 在 σ − x i I 不 为 单 射 ⇒ 存 在 x i 是 特 征 值 \Rightarrow 存在\sigma-x_iI不为单射\Rightarrow 存在x_i是特征值 σxiIxi

例2:证明存在一组基 ( α 1 , α 2 , . . . , α n ) (\alpha_1,\alpha_2,...,\alpha_n) (α1,α2,...,αn),使得线性变换 σ ∈ L ( V ) \sigma\in L(V) σL(V)在该组基下的矩阵 A n × n A_{n\times n} An×n是上三角阵

证明方法一:通过线性变换的角度证明

​ 已知定理: A n × n 为 上 三 角    ⟺    S p a n ( α 1 , α 2 , . . . , α i ) , 1 ≤ i ≤ n    ⟺    S p a n ( α 1 , α 2 , . . . , α i ) 是 σ 的 不 变 子 空 间 A_{n\times n}为上三角\iff Span(\alpha_1,\alpha_2,...,\alpha_i),1\le i\le n\iff Span(\alpha_1,\alpha_2,...,\alpha_i)是\sigma的不变子空间 An×nSpan(α1,α2,...,αi),1inSpan(α1,α2,...,αi)σ

​ 对维数n进行数学归纳:

​ 1)当n=1时, A 1 × 1 A_{1\times 1} A1×1显然是上三角阵;

​ 2)假设n=t-1时, A ( t − 1 ) × ( t − 1 ) A_{(t-1)\times(t-1)} A(t1)×(t1)依然是上三角阵

​ 则当n=t时

​ 设 λ \lambda λ σ \sigma σ的特征值, α 1 \alpha_1 α1为特征向量,令 U = S p a n ( α 1 ) , d i m ( U ) = 1 U=Span(\alpha_1),dim(U)=1 U=Span(α1),dim(U)=1,已知 U U U V V V σ \sigma σ下的不变子空间

⇒ d i m ( V / U ) = t − 1 \Rightarrow dim(V/U)=t-1 dim(V/U)=t1

⇒ V / U 一 定 存 在 一 组 基 ( α 2 + U , α 3 + U , . . . , α t + U ) \Rightarrow V/U一定存在一组基(\alpha_2+U,\alpha_3+U,...,\alpha_t+U) V/U(α2+U,α3+U,...,αt+U)使得 σ / U \sigma/U σ/U在该组基下的矩阵为上三角阵

⇒ V / U = S p a n ( α 2 + U , α 3 + U , . . . , α t + U ) \Rightarrow V/U=Span(\alpha_2+U,\alpha_3+U,...,\alpha_t+U) V/U=Span(α2+U,α3+U,...,αt+U)

⇒ ∀ α i ∈ V , α i + U ∈ V / U , σ / U ( α i + U ) = x 2 ⋅ ( α 2 + U ) + x 3 ⋅ ( α 3 + U ) + . . . + x t ⋅ ( α t + U ) \Rightarrow \forall \alpha_i\in V, \alpha_i+U\in V/U,\sigma/U(\alpha_i+U)=x_2\cdot(\alpha_2+U)+x_3\cdot(\alpha_3+U)+...+x_t\cdot(\alpha_t+U) αiV,αi+UV/U,σ/U(αi+U)=x2(α2+U)+x3(α3+U)+...+xt(αt+U)

⇒ σ ( α i ) + U = ( x 2 ⋅ α 2 + x 3 ⋅ α 3 + . . . + x t ⋅ α t ) + U \Rightarrow \sigma(\alpha_i)+U=(x_2\cdot\alpha_2+x_3\cdot\alpha_3+...+x_t\cdot\alpha_t)+U σ(αi)+U=(x2α2+x3α3+...+xtαt)+U

⇒ σ ( α i ) − ( x 2 ⋅ α 2 + x 3 ⋅ α 3 + . . . + x t ⋅ α t ) ∈ U \Rightarrow \sigma(\alpha_i)-(x_2\cdot\alpha_2+x_3\cdot\alpha_3+...+x_t\cdot\alpha_t)\in U σ(αi)(x2α2+x3α3+...+xtαt)U

⇒ σ ( α i ) − ( x 2 ⋅ α 2 + x 3 ⋅ α 3 + . . . + x t ⋅ α t ) = x 1 ⋅ α 1 \Rightarrow \sigma(\alpha_i)-(x_2\cdot\alpha_2+x_3\cdot\alpha_3+...+x_t\cdot\alpha_t)=x_1\cdot\alpha_1 σ(αi)(x2α2+x3α3+...+xtαt)=x1α1

⇒ σ ( α i ) = x 1 ⋅ α 1 + x 2 ⋅ α 2 + . . . + x t ⋅ α t ∈ S p a n ( α 1 , α 2 , . . . , α t ) \Rightarrow \sigma(\alpha_i)=x_1\cdot\alpha_1+x_2\cdot\alpha_2+...+x_t\cdot\alpha_t \in Span(\alpha_1,\alpha_2,...,\alpha_t) σ(αi)=x1α1+x2α2+...+xtαtSpan(α1,α2,...,αt)

⇒ A t × t \Rightarrow A_{t\times t} At×t为上三角阵


证明方法二:通过矩阵角度证明

证明:原命题等价为n阶矩阵 A n × n A_{n\times n} An×n相似一个上三角阵,对矩阵的阶数n采用数学归纳法如下:

1)当n=1时,显然 A 1 × 1 A_{1\times 1} A1×1相似一个上三角成立;

2)当n=t-1时,假设命题成立,

​ 则当n=t时:设 α 1 \alpha_1 α1 A t × t A_{t\times t} At×t的一个特征向量, λ \lambda λ是对应的特征值,

​ 将 α 1 \alpha_1 α1扩充到 V V V的基 ( α 1 , α 2 , . . . , α t ) (\alpha_1,\alpha_2,...,\alpha_t) (α1,α2,...,αt)

⇒ A ⋅ ( α 1 , α 2 , . . . , α t ) = ( α 1 , α 2 , . . . , α t ) ⋅ C t × t \Rightarrow A\cdot (\alpha_1,\alpha_2,...,\alpha_t)=(\alpha_1,\alpha_2,...,\alpha_t)\cdot C_{t\times t} A(α1,α2,...,αt)=(α1,α2,...,αt)Ct×t

​ 其中 C t × t = [ λ b t − 1 T 0 B ( t − 1 ) × ( t − 1 ) ] C_{t\times t}=\begin{bmatrix}\lambda & b_{t-1}^T\\0&B_{(t-1)\times(t-1)}\end{bmatrix} Ct×t=[λ0bt1TB(t1)×(t1)]

P = ( α 1 , α 2 , . . . , α t ) ⇒ P − 1 ⋅ A ⋅ P = C t × t P=(\alpha_1,\alpha_2,...,\alpha_t)\Rightarrow P^{-1}\cdot A\cdot P=C_{t\times t} P=(α1,α2,...,αt)P1AP=Ct×t

⇒ 存 在 t − 1 阶 矩 阵 S , 使 得 [ 1 0 0 S ] − 1 ⋅ P − 1 ⋅ A ⋅ P ⋅ [ 1 0 0 S ] = [ 1 0 0 S ] − 1 ⋅ [ λ b t − 1 T 0 B ( t − 1 ) × ( t − 1 ) ] ⋅ [ 1 0 0 S ] \Rightarrow 存在t-1阶矩阵S,使得\begin{bmatrix}1&0\\0&S\end{bmatrix}^{-1}\cdot P^{-1}\cdot A\cdot P\cdot \begin{bmatrix}1&0\\0&S\end{bmatrix}=\begin{bmatrix}1&0\\0&S\end{bmatrix}^{-1}\cdot \begin{bmatrix}\lambda & b_{t-1}^T\\0&B_{(t-1)\times(t-1)}\end{bmatrix}\cdot\begin{bmatrix}1&0\\0&S\end{bmatrix} t1S使[100S]1P1AP[100S]=[100S]1[λ0bt1TB(t1)×(t1)][100S]

Q = P ⋅ [ 1 0 0 S ] Q=P\cdot \begin{bmatrix}1&0\\0&S\end{bmatrix} Q=P[100S]

⇒ Q − 1 ⋅ A ⋅ Q = [ 1 0 0 S ] − 1 ⋅ [ λ b t − 1 T 0 B ( t − 1 ) × ( t − 1 ) ] ⋅ [ 1 0 0 S ] = [ λ b t − 1 T ⋅ S 0 S − 1 ⋅ B ( n − 1 ) × ( n − 1 ) ⋅ S ] \Rightarrow Q^{-1}\cdot A\cdot Q=\begin{bmatrix}1&0\\0&S\end{bmatrix}^{-1}\cdot \begin{bmatrix}\lambda & b_{t-1}^T\\0&B_{(t-1)\times(t-1)}\end{bmatrix}\cdot\begin{bmatrix}1&0\\0&S\end{bmatrix}=\begin{bmatrix}\lambda&b_{t-1}^T\cdot S\\0&S^{-1}\cdot B_{(n-1)\times (n-1)}\cdot S\end{bmatrix} Q1AQ=[100S]1[λ0bt1TB(t1)×(t1)][100S]=[λ0bt1TSS1B(n1)×(n1)S]

S − 1 ⋅ B ( n − 1 ) × ( n − 1 ) ⋅ S S^{-1}\cdot B_{(n-1)\times (n-1)}\cdot S S1B(n1)×(n1)S为上三角阵

⇒ A t × t \Rightarrow A_{t\times t} At×t相似一个上三角阵

2.2 特征子空间

定义子空间 E ( λ , σ ) = { α : σ ( α ) = λ ⋅ α } E(\lambda,\sigma)=\{\alpha:\sigma(\alpha)=\lambda\cdot \alpha\} E(λ,σ)={α:σ(α)=λα}称为特征子空间。

T ∈ L ( V ) , d i m ( V ) = n , λ 1 , λ 2 , . . . , λ k T\in L(V),dim(V)=n,\lambda_1,\lambda_2,...,\lambda_k TL(V),dim(V)=n,λ1,λ2,...,λk T T T的不同特征值,则 E ( λ 1 , T ) + E ( λ 2 , T ) + . . . + E ( λ k , T ) E(\lambda_1,T)+E(\lambda_2,T)+...+E(\lambda_k,T) E(λ1,T)+E(λ2,T)+...+E(λk,T)是直和。

以下三条相互等价:

  • σ ( α 1 , α 2 , . . . , α n ) = ( α 1 , α 2 , . . . , α n ) ⋅ A , A = { 对 角 阵 } \sigma(\alpha_1,\alpha_2,...,\alpha_n)=(\alpha_1,\alpha_2,...,\alpha_n)\cdot A,A=\{对角阵\} σ(α1,α2,...,αn)=(α1,α2,...,αn)A,A={}
  • V V V可以分解为n个1维不变子空间
  • V = E ( λ 1 , T ) + E ( λ 2 , T ) + . . . + E ( λ k , T ) V=E(\lambda_1,T)+E(\lambda_2,T)+...+E(\lambda_k,T) V=E(λ1,T)+E(λ2,T)+...+E(λk,T)

3 圆盘定理

3.1 圆盘第一定理

定理内容:对于 A n × n = ( a i j ) n × n , ∣ λ − a i i ∣ ≤ Σ j = 1 , j ≠ i n ∣ a i j ∣ A_{n\times n}=(a_{ij})_{n\times n}, |\lambda-a_{ii}|\le\Sigma_{j=1,j\not=i}^n|a_{ij}| An×n=(aij)n×n,λaiiΣj=1,j=inaij

定理理解:若在复数域内,则其几何意义是特征值落在以 Σ j = 1 , j ≠ i n ∣ a i j ∣ \Sigma_{j=1,j\not=i}^n|a_{ij}| Σj=1,j=inaij为半径, a i j a_{ij} aij为圆心的复数坐标平面的圆盘内。

证明:设 α = ( x 1 , x 2 , . . . , x n ) T \alpha=(x_1,x_2,...,x_n)^T α=(x1,x2,...,xn)T A n × n A_{n\times n} An×n的一个特征向量 ⇒ A α = λ ⋅ α \Rightarrow A\alpha=\lambda\cdot \alpha Aα=λα

k = j , m a x ( x j ) k=j,max(x_j) k=j,max(xj)

∀ i , 1 ≤ i ≤ n \forall i, 1\le i\le n i,1in

⇒ ( α i 1 , α i 2 , . . . , α i k , . . . , α k n ) ⋅ ( x 1 , x 2 , . . . , x k , . . . , x n ) T = λ k ⋅ x k \Rightarrow (\alpha_{i1},\alpha_{i2},...,\alpha_{ik},...,\alpha_{kn})\cdot(x_1,x_2,...,x_k,...,x_n)^T=\lambda_k\cdot x_k (αi1,αi2,...,αik,...,αkn)(x1,x2,...,xk,...,xn)T=λkxk

⇒ ∣ λ k − a i k ∣ ⋅ ∣ x k ∣ = Σ j = 1 , j ≠ k n ∣ a i j ∣ ⋅ ∣ x j ∣ ≤ Σ j = 1 , j ≠ k n ∣ a i j ∣ ⋅ ∣ x k ∣ \Rightarrow |\lambda_k-a_{ik}|\cdot |x_k|=\Sigma_{j=1,j\not=k}^n|a_{ij}|\cdot |x_j|\le \Sigma_{j=1,j\not=k}^n|a_{ij}|\cdot |x_k| λkaikxk=Σj=1,j=knaijxjΣj=1,j=knaijxk

⇒ ∣ λ k − a i k ∣ ≤ Σ j = 1 , j ≠ k n ∣ a i j ∣ \Rightarrow |\lambda_k-a_{ik}|\le \Sigma_{j=1,j\not=k}^n|a_{ij}| λkaikΣj=1,j=knaij

(感觉证明过程有点不严谨)

3.2 圆盘第二定理

  定理内容:有k个圆盘相交,则相交圆盘的并区域一定有k个特征值。

3.3 谱与谱半径

定义

  :表示所有特征值构成的集合

  谱半径:表示特征值模最大值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值