《矩阵理论》大萌课程笔记 - 线性空间与子空间

《矩阵理论》大萌课程笔记 - 线性空间与子空间


总目录

章节名称与链接
线性空间与线性变换线性空间与子空间
有限维线性空间、基、维数
线性变换
内积空间
特征值与特征向量
特殊矩阵
矩阵分解
矩阵函数

声明

  本专栏博客用于记录上海交通大学研究生课程《矩阵理论》笔记,课程任教老师为邓大萌老师。所有内容均为博主个人的课堂笔记,包括课堂例题与证明。如有不妥、错误之处欢迎大家指正。



1 线性空间

1.1 引入:n维实数向量( R n R^n Rn)

1.1.1 运算法则

线性空间满足下列封闭运算性质

  • 加法法则: R 1 n + R 2 n ∈ R n R_1^n+R_2^n\in R^n R1n+R2nRn
  • 数乘法则: ∀ k ∈ R , k R n ∈ R n \forall k\in R, kR^n\in R^n kR,kRnRn
1.1.2 运算律

∀ α , β , γ ∈ F n , ∀ k , k 1 , k 2 ∈ F , ∃ : \forall \alpha,\beta,\gamma \in F^n , \forall k, k_1, k_2 \in F, \exists: α,β,γFn,k,k1,k2F,:

  • 加法交换律: α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
  • 加法结合律: ( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
  • 乘法交换律: k ⋅ α = α ⋅ k k\cdot\alpha=\alpha\cdot k kα=αk
  • 乘法结合律: ( k 1 ⋅ k 2 ) ⋅ α = k 1 ⋅ ( k 2 ⋅ α ) (k_1\cdot k_2)\cdot\alpha = k_1\cdot (k_2\cdot\alpha) (k1k2)α=k1(k2α)
  • 乘法分配律1: ( k 1 + k 2 ) ⋅ α = k 1 ⋅ α + k 2 ⋅ α (k_1+k_2)\cdot\alpha=k_1\cdot\alpha+k_2\cdot\alpha (k1+k2)α=k1α+k2α
  • 乘法分配律2: ( α + β ) ⋅ k = α ⋅ k + β ⋅ k (\alpha+\beta)\cdot k=\alpha\cdot k+\beta\cdot k (α+β)k=αk+βk
  • 存在零向量 0 0 0 0 + α = α 0+\alpha=\alpha 0+α=α
  • 存在逆向量 − α -\alpha α α + ( − α ) = 0 \alpha+(-\alpha)=0 α+(α)=0
1.1.3 推广至线性空间

N → R → C → F → a n y t h i n g N\to R\to C\to F\to anything NRCFanything

F 1 → F 2 → F 3 → F n → l i n e a r s p a c i n g F^1\to F^2 \to F^3\to F^n \to linearspacing F1F2F3Fnlinearspacing

例:实系数多项式(记作 P n ( R ) P_n(R) Pn(R))满足封闭运算条件并且符合八条运算律,属于线性空间;

1.2 线性空间定义与性质

1.2.1 定义

  数域 F F F的一个集合 V V V集合定义两种运算’ + + +‘与’ ⋅ \cdot ’,使得满足封闭条件【条件1】 V + V → V V+V\to V V+VV以及 F ⋅ V → V F\cdot V\to V FVV,并且符合八条运算律【条件2】,则该集合为线性空间

1.2.2 性质
  • 线性空间的 0 0 0有且仅有一个

证明:如果线性空间 V V V中存在两个0,记作 O 1 O_1 O1 O 2 O_2 O2

则: O 1 = O 1 + O 2 = O 2 + O 1 = O 2 O_1=O_1+O_2=O_2+O_1=O_2 O1=O1+O2=O2+O1=O2

证毕。

  • 线性空间中的任意元素 α \alpha α有且只有一个逆元素 − α -\alpha α

  • k ⋅ α    ⟺    k = 0 或 α = 0 k\cdot\alpha\iff k=0 或 \alpha=0 kαk=0α=0

2 子空间

2.1 定义

  设集合 V V V为数域 F F F上的线性空间,若存在集合 U ⊆ V U\subseteq V UV U U U同样为数域 F F F上的线性空间,线性空间 U U U为线性空间 V V V的子空间

两个特殊的子空间:0空间与自身。

2.2 判别方法

集合U满足以下两个条件即为子空间:

  • 非空空间/集合
  • 运算封闭(加法、数乘均落入自身定义的范围内)

总结:非空封闭

设大空间为 F n F^n Fn C n C^n Cn

例1: U = { ( x , y , z ) ∈ F 3 , x + 2 y + 3 z = 0 } U=\{(x,y,z)\in F^3, x+2y+3z=0\} U={(x,y,z)F3,x+2y+3z=0}是线性空间 F 3 F^3 F3的子空间

例2: U = { ( x , y , z ) ∈ F 3 , x + 2 y + 3 z = b } U=\{(x,y,z)\in F^3, x+2y+3z=b\} U={(x,y,z)F3,x+2y+3z=b}不是线性空间,因为0不在该集合中,不满足八定律之一

例3: U = { ( x , y , z ) ∈ F 3 , x y z = 0 } U=\{(x,y,z)\in F^3, xyz=0\} U={(x,y,z)F3,xyz=0}不是线性空间,更不是子空间。因为加和的封闭性不满足

例4: U = { ( x , y , z ) ∈ F 3 , x 3 = y 3 } U=\{(x,y,z)\in F^3, x^3=y^3\} U={(x,y,z)F3,x3=y3}是线性空间

例5: U = { ( x , y , z ) ∈ C 3 , x 3 = y 3 } U=\{(x,y,z)\in C^3, x^3=y^3\} U={(x,y,z)C3,x3=y3}不是线性空间,更不是子空间

2.3 子空间的运算

  • 交运算:若存在两个线性空间U与W的交集不为空,则相交所得集合为空间U与空间W的子空间。

  • 和运算: U + W = { γ = α + β , α ∈ U , β ∈ W } U+W=\{\gamma=\alpha+\beta, \alpha\in U, \beta\in W\} U+W={γ=α+β,αU,βW}, 和空间是包含W与U的最小子空间。

    注意:不存在并空间,两空间相并不一定是线性空间,加和的封闭状态难以满足,当且仅当U为W的子空间或W为U的子空间时,两空间的并集才是线性空间。

例1: U 1 = { ( x , y , 0 ) ∈ F 3 , x , y ∈ F } U_1=\{(x,y,0)\in F^3, x,y\in F\} U1={(x,y,0)F3,x,yF}

U 2 = { ( x , x , x ) ∈ F 3 , x ∈ F } U_2=\{(x,x,x)\in F^3, x\in F\} U2={(x,x,x)F3,xF}

​ 交空间为:0

​ 和空间为: F 3 F^3 F3

例2: U 1 = { A = A T , A ∈ R n × n } U_1=\{A=A^T,A\in R^{n\times n}\} U1={A=AT,ARn×n}

U 2 = { A 为 上 三 角 矩 阵 , A ∈ R n × n } U_2=\{A为上三角矩阵,A\in R^{n\times n}\} U2={A,ARn×n}

​ 交空间为: A 为 对 角 矩 阵 , A ∈ R n × n {A为对角矩阵, A\in R^{n\times n}} A,ARn×n

​ 和空间为: R n × n R^{n\times n} Rn×n

2.4 直和定义与判别方法

2.4.1 直和定义

   ∀ γ ∈ U 1 + U 2 + . . . + U k \forall \gamma\in U_1+U_2+...+U_k γU1+U2+...+Uk有且仅有 γ = α 1 + α 2 + . . . + α 3 \gamma=\alpha_1+\alpha_2+...+\alpha_3 γ=α1+α2+...+α3唯一表示,记作 U 1 ⊕ U 2 ⊕ . . . ⊕ U k U_1\oplus U_2\oplus...\oplus U_k U1U2...Uk

2.4.2 直和判别
  • 一般情况判别: 0 = 0 + 0 + . . . + 0 0=0+0+...+0 0=0+0+...+0
  • 只有两个空间时: U 1 ∩ U 2 = 0 ⇔ U 1 ⊕ U 2 U_1\cap U_2 = 0 \Leftrightarrow U_1\oplus U_2 U1U2=0U1U2

证明:
反证法,假设 U 1 ∩ U 2 = 0 ⇏ U 1 ⊕ U 2 U_1\cap U_2=0 \not\Rightarrow U_1\oplus U_2 U1U2=0U1U2,则一定存在 α ∈ U 1 , β ∈ U 2 , U 1 , U 2 ≠ 0 \alpha\in U_1,\beta\in U_2,U_1,U_2\not= 0 αU1,βU2,U1,U2=0使得 α + β = 0 \alpha+\beta=0 α+β=0

⇒ α = − β ∈ U 2 ⇒ α ∈ U 1 ∩ U 2 \Rightarrow \alpha = -\beta \in U_2\Rightarrow \alpha\in U_1\cap U_2 α=βU2αU1U2

​ 又因为 U 1 ∩ U 2 = 0 , 但 是 α ≠ 0 U_1\cap U_2=0,但是\alpha\not=0 U1U2=0,α=0,矛盾!

​ 因此 U 1 ∩ U 2 = 0 ⇒ U 1 ⊕ U 2 U_1\cap U_2=0 \Rightarrow U_1\oplus U_2 U1U2=0U1U2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值