《矩阵理论》大萌课程笔记 - 内积空间

《矩阵理论》大萌课程笔记 - 内积空间


总目录

章节名称与链接
线性空间与线性变换线性空间与子空间
有限维线性空间、基、维数
线性变换
内积空间
特征值与特征向量
特殊矩阵
矩阵分解
矩阵函数

声明

  本专栏博客用于记录上海交通大学研究生课程《矩阵理论》笔记,课程任教老师为邓大萌老师。所有内容均为博主个人的课堂笔记,包括课堂例题与证明。如有不妥、错误之处欢迎大家指正。



1 回顾已学的內积

1.1 R n R^n Rn的內积

定义 α = ( x 1 , x 2 , . . . , x n ) , β = ( y 1 , y 2 , . . . , y n ) , α , β ∈ R n \alpha=(x_1,x_2,...,x_n),\beta=(y_1,y_2,...,y_n),\alpha,\beta\in R^n α=(x1,x2,...,xn),β=(y1,y2,...,yn),α,βRn,则称 ( α , β ) = Σ i = 1 n x i ⋅ y i ∈ R (\alpha,\beta)=\Sigma_{i=1}^nx_i\cdot y_i \in R (α,β)=Σi=1nxiyiR α , β \alpha,\beta α,β的內积。

运算性质(交换、分配、正定):

  • ( α , β ) = ( β , α ) (\alpha,\beta)=(\beta,\alpha) (α,β)=(β,α)
  • ( α + γ , β ) = ( α , β ) + ( γ , β ) (\alpha+\gamma,\beta)=(\alpha,\beta)+(\gamma,\beta) (α+γ,β)=(α,β)+(γ,β)
  • ( k ⋅ α , β ) = k ⋅ ( α , β ) (k\cdot \alpha,\beta)=k\cdot(\alpha,\beta) (kα,β)=k(α,β)
  • ( α , α ) ≥ 0   i f f   α = 0 , 等 号 成 立 (\alpha,\alpha)\ge 0\ iff\ \alpha=0,等号成立 (α,α)0 iff α=0,

1.2 C n C^n Cn的內积

定义 α = ( x 1 , x 2 , . . . , x n ) , β = ( y 1 , y 2 , . . . , y n ) , α , β ∈ C n \alpha=(x_1,x_2,...,x_n),\beta=(y_1,y_2,...,y_n),\alpha,\beta\in C^n α=(x1,x2,...,xn),β=(y1,y2,...,yn),α,βCn,则称 ( α , β ) = Σ i = 1 n y i ‾ ⋅ x i ∈ C (\alpha,\beta)=\Sigma_{i=1}^n\overline{y_i}\cdot x_i\in C (α,β)=Σi=1nyixiC α , β \alpha,\beta α,β的內积。

运算性质:

  • ( α , β ) = ( β , α ) ‾ (\alpha,\beta)=\overline{(\beta,\alpha)} (α,β)=(β,α)
  • ( α + γ , β ) = ( α , β ) + ( γ , β ) (\alpha+\gamma,\beta)=(\alpha,\beta)+(\gamma,\beta) (α+γ,β)=(α,β)+(γ,β)
  • ( k ⋅ α , β ) = k ⋅ ( α , β ) (k\cdot \alpha,\beta)=k\cdot(\alpha,\beta) (kα,β)=k(α,β)
  • ( α , α ) ≥ 0   i f f   α = 0 , 等 号 成 立 (\alpha,\alpha)\ge 0\ iff\ \alpha=0,等号成立 (α,α)0 iff α=0,

2 线性空间的內积

2.1 內积定义、判别与性质

定义: α , β ∈ V , ( α 1 , α 2 , . . . , α n ) 是 V 的 一 组 基 , α = ( α 1 , α 2 , . . . , α n ) ⋅ ( x 1 , x 2 , . . . , x n ) T , β = ( α 1 , α 2 , . . . , α n ) ⋅ ( y 1 , y 2 , . . . , y n ) T , \alpha,\beta\in V,(\alpha_1,\alpha_2,...,\alpha_n)是V的一组基,\alpha=(\alpha_1,\alpha_2,...,\alpha_n)\cdot(x_1,x_2,...,x_n)^T,\beta=(\alpha_1,\alpha_2,...,\alpha_n)\cdot(y_1,y_2,...,y_n)^T, α,βV,(α1,α2,...,αn)Vα=(α1,α2,...,αn)(x1,x2,...,xn)T,β=(α1,α2,...,αn)(y1,y2,...,yn)T,,则称 ( α , β ) = Σ i = 1 n y i ‾ ⋅ x i ∈ F (\alpha,\beta)=\Sigma_{i=1}^n\overline{y_i}\cdot x_i \in F (α,β)=Σi=1nyixiF α , β \alpha,\beta α,β的內积。

判别:

  • 满足定义的 V × V → F V\times V\rightarrow F V×VF这一映射关系;
  • 满足四条运算性质;

例: ∀ f ( x ) , g ( x ) ∈ P n [ R ] , 判 别 ( f ( x ) , g ( x ) ) = ∫ 0 1 f ( x ) g ( x ) d x 是 否 为 f ( x ) , g ( x ) 的 內 积 ? \forall f(x),g(x)\in P_n[R],判别(f(x),g(x))=\int_0^1f(x)g(x)dx是否为f(x),g(x)的內积? f(x),g(x)Pn[R],(f(x),g(x))=01f(x)g(x)dxf(x),g(x)

解:易识别 ( f ( x ) , g ( x ) ) ∈ R (f(x),g(x))\in R (f(x),g(x))R,满足內积定义的映射关系;

又: ( f ( x ) , g ( x ) ) = ∫ 0 1 f ( x ) g ( x ) d x = ∫ 0 1 g ( x ) f ( x ) d x = ( g ( x ) , f ( x ) ) ‾ (f(x),g(x))=\int_0^1f(x)g(x)dx=\int_0^1g(x)f(x)dx=\overline{(g(x),f(x))} (f(x),g(x))=01f(x)g(x)dx=01g(x)f(x)dx=(g(x),f(x))

( f ( x ) + h ( x ) , g ( x ) ) = ∫ 0 1 ( f ( x ) + h ( x ) ) g ( x ) d x = ∫ 0 1 f ( x ) g ( x ) d x + ∫ 0 1 h ( x ) g ( x ) d x = ( f ( x ) , g ( x ) ) + ( h ( x ) , g ( x ) ) (f(x)+h(x),g(x))=\int_0^1(f(x)+h(x))g(x)dx=\int_0^1f(x)g(x)dx+\int_0^1h(x)g(x)dx=(f(x),g(x))+(h(x),g(x)) (f(x)+h(x),g(x))=01(f(x)+h(x))g(x)dx=01f(x)g(x)dx+01h(x)g(x)dx=(f(x),g(x))+(h(x),g(x))

( k ⋅ f ( x ) , g ( x ) ) = ∫ 0 1 k ⋅ f ( x ) g ( x ) d x = k ⋅ ∫ 0 1 f ( x ) g ( x ) d x = k ⋅ ( f ( x ) , g ( x ) ) (k\cdot f(x),g(x))=\int_0^1k\cdot f(x)g(x)dx=k\cdot \int_0^1f(x)g(x)dx=k\cdot(f(x),g(x)) (kf(x),g(x))=01kf(x)g(x)dx=k01f(x)g(x)dx=k(f(x),g(x))

( f ( x ) , f ( x ) ) = ∫ 0 1 f 2 ( x ) d x ≥ 0   i f f   f ( x ) = 0 , 等 号 成 立 (f(x),f(x))=\int_0^1f^2(x)dx\ge 0\ iff\ f(x)=0,等号成立 (f(x),f(x))=01f2(x)dx0 iff f(x)=0,

均满足四个运算性质;

因此 ( f ( x ) , g ( x ) ) = ∫ 0 1 f ( x ) g ( x ) d x 是 f ( x ) , g ( x ) (f(x),g(x))=\int_0^1f(x)g(x)dx是f(x),g(x) (f(x),g(x))=01f(x)g(x)dxf(x),g(x)的內积

性质:

1)设 γ \gamma γ向量固定,定义变换 σ : V → F , σ ( α ) = ( α , γ ) ⇒ σ \sigma:V\rightarrow F,\sigma(\alpha)=(\alpha,\gamma)\Rightarrow\sigma σ:VF,σ(α)=(α,γ)σ是线性变换

2) ( 0 , α ) = 0 (0,\alpha)=0 (0,α)=0

3) ( α , β + γ ) = ( β + γ , α ) ‾ = ( β , α ) ‾ + ( γ , α ) ‾ = ( α , β ) + ( α , γ ) (\alpha,\beta+\gamma)=\overline{(\beta+\gamma,\alpha)}=\overline{(\beta,\alpha)}+\overline{(\gamma,\alpha)}=(\alpha,\beta)+(\alpha,\gamma) (α,β+γ)=(β+γ,α)=(β,α)+(γ,α)=(α,β)+(α,γ)

4) ( α , k ⋅ β ) = ( k ⋅ β , α ) ‾ = k ‾ ⋅ ( β , α ) ‾ = k ‾ ⋅ ( α , β ) (\alpha,k\cdot \beta)=\overline{(k\cdot\beta,\alpha)}=\overline k\cdot\overline{(\beta,\alpha)}=\overline k\cdot(\alpha,\beta) (α,kβ)=(kβ,α)=k(β,α)=k(α,β)

5) ( Σ i = 1 n x i α i , Σ i = 1 m y j β j ) = Σ i = 1 n Σ i = 1 m x i y ‾ i ( α i , β i ) (\Sigma_{i=1}^nx_i\alpha_i,\Sigma_{i=1}^my_j\beta_j)=\Sigma_{i=1}^n\Sigma_{i=1}^mx_i\overline y_i(\alpha_i,\beta_i) (Σi=1nxiαi,Σi=1myjβj)=Σi=1nΣi=1mxiyi(αi,βi)

2.2 向量长度

定义:

∀ α ∈ V , ∣ ∣ α ∣ ∣ = ( α , α ) \forall \alpha\in V,||\alpha||=\sqrt{(\alpha,\alpha)} αV,α=(α,α)

性质:

1) ∣ ∣ k ⋅ α ∣ ∣ = k ⋅ ∣ ∣ α ∣ ∣ ||k\cdot\alpha||=k\cdot||\alpha|| kα=kα

2)Cauchy-Schwarz不等式 ∣ ( α , β ) ∣ ≤ ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ |(\alpha,\beta)|\le ||\alpha||\cdot||\beta|| (α,β)αβ,当 α = k ⋅ β \alpha=k\cdot\beta α=kβ时等号成立。

证明:取两个不共线的向量 α , β ∈ V \alpha,\beta\in V α,βV,设 β \beta β α \alpha α的投影为 c ⋅ α c\cdot \alpha cα,则 β − c ⋅ α \beta-c\cdot\alpha βcα α \alpha α正交(在此提前使用正交概念)

⇒ ( β − c α , α ) = 0 ⇒ c = ( β , α ) ( α , α ) ⋅ α \Rightarrow (\beta-c\alpha,\alpha)=0\Rightarrow c =\frac{(\beta,\alpha)}{(\alpha,\alpha)}\cdot \alpha (βcα,α)=0c=(α,α)(β,α)α

从几何意义上看, β , ( β , α ) ( α , α ) ⋅ α , β − ( β , α ) ( α , α ) ⋅ α \beta,\frac{(\beta,\alpha)}{(\alpha,\alpha)}\cdot \alpha,\beta-\frac{(\beta,\alpha)}{(\alpha,\alpha)}\cdot \alpha β,(α,α)(β,α)α,β(α,α)(β,α)α三者满足勾股定理

⇒ ∣ ∣ β ∣ ∣ 2 = ∣ ∣ ( β , α ) ( α , α ) ⋅ α ∣ ∣ 2 + ∣ ∣ β − ( β , α ) ( α , α ) ⋅ α ∣ ∣ 2 ≥ ∣ ∣ ( β , α ) ( α , α ) ⋅ α ∣ ∣ 2 = ∣ ( β , α ) ( α , α ) ∣ 2 ⋅ ∣ ∣ α ∣ ∣ 2 = ∣ ( β , α ) ∣ 2 ∣ ∣ α ∣ ∣ 2 \Rightarrow ||\beta||^2=||\frac{(\beta,\alpha)}{(\alpha,\alpha)}\cdot \alpha||^2+||\beta-\frac{(\beta,\alpha)}{(\alpha,\alpha)}\cdot \alpha||^2\ge||\frac{(\beta,\alpha)}{(\alpha,\alpha)}\cdot \alpha||^2=|\frac{(\beta,\alpha)}{(\alpha,\alpha)}|^2\cdot||\alpha||^2=\frac{|(\beta,\alpha)|^2}{||\alpha||^2} β2=(α,α)(β,α)α2+β(α,α)(β,α)α2(α,α)(β,α)α2=(α,α)(β,α)2α2=α2(β,α)2

⇒ ∣ ( β , α ) ∣ 2 ≤ ∣ ∣ α ∣ ∣ 2 ⋅ ∣ ∣ β ∣ ∣ 2 \Rightarrow |(\beta,\alpha)|^2\le||\alpha||^2\cdot||\beta||^2 (β,α)2α2β2

⇒ ∣ ( α , β ) ∣ ≤ ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ \Rightarrow |(\alpha,\beta)|\le ||\alpha||\cdot ||\beta|| (α,β)αβ

证毕。

3)几何定理: ∣ ∣ α + β ∣ ∣ ≤ ∣ ∣ α ∣ ∣ + ∣ ∣ β ∣ ∣ ||\alpha+\beta||\le||\alpha||+||\beta|| α+βα+β

证明:

∣ ∣ α + β ∣ ∣ 2 = ( α + β , α + β ) = ( α , α ) + ( β + β ) + ( α , β ) + ( β , α ) = ∣ ∣ α ∣ ∣ 2 + ∣ ∣ β ∣ ∣ 2 + ( α , β ) + ( β , α ) ||\alpha+\beta||^2=(\alpha+\beta,\alpha+\beta)=(\alpha,\alpha)+(\beta+\beta)+(\alpha,\beta)+(\beta,\alpha)=||\alpha||^2+||\beta||^2+(\alpha,\beta)+(\beta,\alpha) α+β2=(α+β,α+β)=(α,α)+(β+β)+(α,β)+(β,α)=α2+β2+(α,β)+(β,α)

⇒ ∣ ( α + β , α + β ) ∣ = ∣ ∣ ∣ α ∣ ∣ 2 + ∣ ∣ β ∣ ∣ 2 + ( α , β ) + ( β , α ) ∣ ≤ ∣ ∣ α ∣ ∣ 2 + ∣ ∣ β ∣ ∣ 2 + 2 ∣ ( α , β ) ∣ \Rightarrow |(\alpha+\beta,\alpha+\beta)|=|||\alpha||^2+||\beta||^2+(\alpha,\beta)+(\beta,\alpha)|\le||\alpha||^2+||\beta||^2+2|(\alpha,\beta)| (α+β,α+β)=α2+β2+(α,β)+(β,α)α2+β2+2(α,β)

又由Cauchy-Schwarz不等式得: ∣ ( α , β ∣ ) ≤ ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ |(\alpha,\beta|)\le||\alpha||\cdot||\beta|| (α,β)αβ

⇒ ∣ ∣ α + β ∣ ∣ 2 = ( α + β , α + β ) ≤ ∣ ∣ α ∣ ∣ 2 + ∣ ∣ β ∣ ∣ 2 + 2 ∣ ( α , β ) ∣ ≤ ∣ ∣ α ∣ ∣ 2 + ∣ ∣ β ∣ ∣ 2 + 2 ∣ ∣ α ∣ ∣ ⋅ ∣ ∣ β ∣ ∣ = ( ∣ ∣ α ∣ ∣ + ∣ ∣ β ∣ ∣ ) 2 \Rightarrow ||\alpha+\beta||^2=(\alpha+\beta,\alpha+\beta)\le||\alpha||^2+||\beta||^2+2|(\alpha,\beta)|\le||\alpha||^2+||\beta||^2+2||\alpha||\cdot||\beta||=(||\alpha||+||\beta||)^2 α+β2=(α+β,α+β)α2+β2+2(α,β)α2+β2+2αβ=(α+β)2

⇒ ∣ ∣ ( α + β ) ∣ ∣ ≤ ∣ ∣ α ∣ ∣ + ∣ ∣ β ∣ ∣ \Rightarrow ||(\alpha+\beta)||\le||\alpha||+||\beta|| (α+β)α+β

例:证明平行四边形对角线长度与四条边长度的关系。

证明:
设同一顶点出发的两条边构成的向量分别为 α , β \alpha,\beta α,β,则对角线可以表示为 α + β , α − β \alpha+\beta,\alpha-\beta α+β,αβ

⇒ ∣ ∣ α + β ∣ ∣ 2 + ∣ ∣ α − β ∣ ∣ 2 = ( α + β , α + β ) + ( α − β , α − β ) = 2 ∣ ∣ α ∣ ∣ 2 + 2 ∣ ∣ β ∣ ∣ 2 \Rightarrow ||\alpha+\beta||^2+||\alpha-\beta||^2=(\alpha+\beta,\alpha+\beta)+(\alpha-\beta,\alpha-\beta)=2||\alpha||^2+2||\beta||^2 α+β2+αβ2=(α+β,α+β)+(αβ,αβ)=2α2+2β2

2.3 向量正交

2.3.1 相关概念

正交: α , β ∈ V , ( α , β ) = 0 \alpha,\beta\in V,(\alpha,\beta)=0 α,βV,(α,β)=0则称 α , β \alpha,\beta α,β正交

正交向量组: α 1 , α 2 , . . . , α k ∈ V , ( α i , α j ) = 0 , 1 ≤ i < j ≤ k \alpha_1,\alpha_2,...,\alpha_k\in V,(\alpha_i,\alpha_j)=0,1\le i<j\le k α1,α2,...,αkV,(αi,αj)=0,1i<jk则称 ( α 1 , α 2 , . . . , α k ) (\alpha_1,\alpha_2,...,\alpha_k) (α1,α2,...,αk)是一组正交向量组

标准正交组: α 1 , α 2 , . . . , α k ∈ V , ( α i , α j ) = 0 , ( α i , α i ) = 1 , 1 ≤ i < j ≤ k \alpha_1,\alpha_2,...,\alpha_k\in V,(\alpha_i,\alpha_j)=0,(\alpha_i,\alpha_i)=1,1\le i<j\le k α1,α2,...,αkV,(αi,αj)=0,(αi,αi)=1,1i<jk**则称 ( α 1 , α 2 , . . . , α k ) (\alpha_1,\alpha_2,...,\alpha_k) (α1,α2,...,αk)是一组标准正交组

标准正交基: α 1 , α 2 , . . . , α n ∈ V , ( α i , α j ) = 0 , ( α i , α i ) = 1 , 1 ≤ i < j ≤ n \alpha_1,\alpha_2,...,\alpha_n\in V,(\alpha_i,\alpha_j)=0,(\alpha_i,\alpha_i)=1,1\le i<j\le n α1,α2,...,αnV,(αi,αj)=0,(αi,αi)=1,1i<jn则称 ( α 1 , α 2 , . . . , α n ) (\alpha_1,\alpha_2,...,\alpha_n) (α1,α2,...,αn)是一组标准正交基

(注:正交向量组线性无关)

2.3.2 斯密特正交化

  任给一组线性无关组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn可通过以下计算过程化为一组正交向量组 β 1 , β 2 , . . . , β n \beta_1,\beta_2,...,\beta_n β1,β2,...,βn与一组标准正交基 γ 1 , γ 2 , . . . , γ n \gamma_1,\gamma_2,...,\gamma_n γ1,γ2,...,γn

β 1 = α 1 \beta_1=\alpha_1 β1=α1

β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) ⋅ β 1 \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\cdot \beta_1 β2=α2(β1,β1)(α2,β1)β1

. . . ... ...

β n = α n − ( α n , β 1 ) ( β 1 , β 1 ) ⋅ β 1 − ( α n , β 2 ) ( β 2 , β 2 ) ⋅ β 2 − . . . − ( α n , β n − 1 ) ( β 1 , β n − 1 ) ⋅ β n − 1 \beta_n=\alpha_n-\frac{(\alpha_n,\beta_1)}{(\beta_1,\beta_1)}\cdot\beta_1-\frac{(\alpha_n,\beta_2)}{(\beta_2,\beta_2)}\cdot\beta_2-...-\frac{(\alpha_n,\beta_{n-1})}{(\beta_1,\beta_{n-1})}\cdot\beta_{n-1} βn=αn(β1,β1)(αn,β1)β1(β2,β2)(αn,β2)β2...(β1,βn1)(αn,βn1)βn1

γ i = β i ∣ ∣ β i ∣ ∣ , 1 ≤ i ≤ n \gamma_i=\frac{\beta_i}{||\beta_i||},1\le i\le n γi=βiβi,1in

2.3.3 正交补空间

定义:设 V V V是内积空间, U U U V V V的子空间,定义 U ⊥ = { α ∣ α ∈ V , ∀ β ∈ U , ( α , β ) = 0 } U^{\bot}=\{\alpha|\alpha\in V,\forall \beta\in U,(\alpha,\beta)=0\} U={ααV,βU,(α,β)=0}则有结论 V = U ⊕ U ⊥ V=U\oplus U^\bot V=UU

证明:
α 1 , α 2 , . . . , α k \alpha_1,\alpha_2,...,\alpha_k α1,α2,...,αk U U U的一组标准正交基,将 α 1 , α 2 , . . . , α k \alpha_1,\alpha_2,...,\alpha_k α1,α2,...,αk扩展到 V V V的一组标准正交基为 ( α 1 , α 2 , . . . , α k , α k + 1 , . . . , α n ) (\alpha_1,\alpha_2,...,\alpha_k,\alpha_{k+1},...,\alpha_n) (α1,α2,...,αk,αk+1,...,αn),设 W = S p a n ( α k + 1 , α k + 2 , . . . , α n ) W=Span(\alpha_{k+1},\alpha_{k+2},...,\alpha_n) W=Span(αk+1,αk+2,...,αn),则 V = U ⊕ W V=U\oplus W V=UW

α ∈ U , ∀ β ∈ W \alpha\in U,\forall \beta\in W αU,βW α = x 1 ⋅ α 1 + x 2 ⋅ α 2 + . . . + x k ⋅ α k , β = x k + 1 ⋅ α k + 1 + x k + 2 ⋅ α k + 2 + . . . + x n ⋅ α n \alpha=x_1\cdot \alpha_1+x_2\cdot\alpha_2+...+x_k\cdot\alpha_k,\beta=x_{k+1}\cdot\alpha_{k+1}+x_{k+2}\cdot\alpha_{k+2}+...+x_n\cdot\alpha_n α=x1α1+x2α2+...+xkαk,β=xk+1αk+1+xk+2αk+2+...+xnαn

⇒ ( α , β ) = ( Σ i = 0 k x i ⋅ α i , Σ j = k + 1 n x j ⋅ α j ) = Σ i = 0 k Σ j = k + 1 n ( x i ⋅ α i , x j ⋅ α j ) = Σ i = 0 k Σ j = k + 1 n x i ⋅ x ‾ j ⋅ ( α i , α j ) = 0 \Rightarrow (\alpha,\beta)=(\Sigma_{i=0}^kx_i\cdot\alpha_i,\Sigma_{j=k+1}^nx_j\cdot \alpha_j)=\Sigma_{i=0}^k\Sigma_{j=k+1}^n(x_i\cdot\alpha_i,x_j\cdot\alpha_j)=\Sigma_{i=0}^k\Sigma_{j=k+1}^nx_i\cdot \overline x_j\cdot(\alpha_i,\alpha_j)=0 (α,β)=(Σi=0kxiαi,Σj=k+1nxjαj)=Σi=0kΣj=k+1n(xiαi,xjαj)=Σi=0kΣj=k+1nxixj(αi,αj)=0

⇒ W = U ⊥ \Rightarrow W=U^\bot W=U

证毕。

2.3.4 正交投影变换

定义:对于內积空间 V V V,存在子空间 U U U与正交补空间 U ⊥ , V = U ⊕ U ⊥ , P : V → V ⇒ ∀ α ∈ V , ∃ β ∈ U , γ ∈ U ⊥ , α = β + γ U^\bot,V=U\oplus U^\bot,P:V\rightarrow V\Rightarrow\forall \alpha\in V,\exist\beta\in U,\gamma\in U^\bot,\alpha=\beta+\gamma U,V=UU,P:VVαV,βU,γU,α=β+γ,令 P ( α ) = β P(\alpha)=\beta P(α)=β,称变换 P P P为投影变换。

性质:

1) n u l l   P = U ⊥ , r a n g e   P = U null\ P=U^\bot,range\ P= U null P=U,range P=U

2) P 2 = P P^2=P P2=P P ∗ = P P^*=P P=P

3) ⋆ ⋆ \star\star e 1 , e 2 , . . . , e k e_1,e_2,...,e_k e1,e2,...,ek U U U的一组标准正交基, β = x 1 ⋅ e 1 + x 2 ⋅ e 2 + . . . + x k ⋅ e k \beta=x_1\cdot e_1+x_2\cdot e_2+...+x_k\cdot e_k β=x1e1+x2e2+...+xkek x i = ( α , e i ) x_i=(\alpha,e_i) xi=(α,ei)

​ (系数即投影)

2.3.5 最佳近似向量

定义:对于內积空间 V V V U U U V V V的子空间, β ∈ V , β ∉ U , ∀ γ ∈ U , ∃ α ∈ U , ∣ ∣ β − α ∣ ∣ ≤ ∣ ∣ β − γ ∣ ∣ \beta\in V,\beta\not\in U,\forall \gamma\in U,\exist\alpha\in U,||\beta-\alpha||\le||\beta-\gamma|| βV,βU,γU,αU,βαβγ则称 α 是 β \alpha是\beta αβ的最佳近似向量, α \alpha α就是 β \beta β U U U空间的投影。

例1: A x = b Ax=b Ax=b是一个矛盾方程组(说明b向量不在A的列空间中),求该方程组的最佳近似解。

解:等价于求解 b b b在A的列空间$ C(A) 中 的 最 佳 近 似 解 中的最佳近似解 b_0 , 再 求 解 方 程 ,再求解方程 Ax_0=b_0$的解;

⇒ b − A x 0 ∈ C ( A ) ⊥ = N ( A T ) ⇒ A T ( b − A x 0 ) = 0 ⇒ A T A x 0 = A T b \Rightarrow b-Ax_0\in C(A)^\bot=N(A^T)\Rightarrow A^T(b-Ax_0)=0\Rightarrow A^TAx_0=A^Tb bAx0C(A)=N(AT)AT(bAx0)=0ATAx0=ATb

​ 求解 A T A x 0 = A T b A^TAx_0=A^Tb ATAx0=ATb方程就可以求解出近似解 x 0 x_0 x0

例2(作业2): V = P 3 [ R ] , U = { f ( x ) = P 3 [ R ] : f ( 0 ) = 0 , f ′ ( 0 ) = 0 } V=P_3[R],U=\{f(x)=P_3[R]:f(0)=0,f'(0)=0\} V=P3[R],U={f(x)=P3[R]:f(0)=0,f(0)=0},求 U U U上一个向量 f ( x ) f(x) f(x)使的 ∫ 0 1 ∣ 2 + 3 x − f ( x ) ∣ 2 d x \int_0^1|2+3x-f(x)|^2dx 012+3xf(x)2dx最小。

解:易知 U = S p a n ( x 2 , x 3 ) U=Span(x^2,x^3) U=Span(x2,x3)

​ 用斯密特正交化法化成标准正交基表示为: U = S p a n ( 5 x 2 , 6 7 x 3 − 5 7 x 2 ) U=Span(\sqrt5x^2,6\sqrt7x^3-5\sqrt7x^2) U=Span(5 x2,67 x357 x2)

​ 定义内积 f ( x ) , g ( x ) ∈ V , ( f ( x ) , g ( x ) ) = ∫ 0 1 f ( x ) g ( x ) d x f(x),g(x)\in V,(f(x),g(x))=\int_0^1f(x)g(x)dx f(x),g(x)V,(f(x),g(x))=01f(x)g(x)dx,设 g ( x ) = 2 + 3 x ⇒ g ( x ) ∉ U g(x)=2+3x\Rightarrow g(x)\not\in U g(x)=2+3xg(x)U

⇒ m i n ( ∫ 0 1 ∣ 2 + 3 x − f ( x ) ∣ d x )    ⟺    m i n ( ∣ ∣ g ( x ) − f ( x ) ∣ ∣ ) \Rightarrow min(\int_0^1|2+3x-f(x)|dx)\iff min(||g(x)-f(x)||) min(012+3xf(x)dx)min(g(x)f(x))

   ⟺    \iff 求解 g ( x ) g(x) g(x) f ( x ) f(x) f(x)上的最佳近似向量,设 f ( x ) = a 1 5 x 2 + a 2 ( 6 7 x 3 − 5 7 x 2 ) ⇒ a 1 = ( g ( x ) , 5 x 2 ) , a 2 = ( g ( x ) , 6 7 x 3 − 5 7 x 2 ) f(x)=a_1\sqrt5x^2+a_2(6\sqrt7x^3-5\sqrt7x^2)\Rightarrow a_1=(g(x),\sqrt5x^2),a_2=(g(x),6\sqrt7x^3-5\sqrt7x^2) f(x)=a15 x2+a2(67 x357 x2)a1=(g(x),5 x2),a2=(g(x),67 x357 x2)

⇒ . . . \Rightarrow ... ...

例3(作业3):在 P 3 [ R ] P_3[R] P3[R]中求一个多项式 f ( x ) f(x) f(x),使得 ∫ − π π ∣ c o s   x − f ( x ) ∣ 2 d x \int_{-\pi}^{\pi}|cos\ x-f(x)|^2dx ππcos xf(x)2dx最小。

步骤:

  1. 先求 U U U的斯密特标准正交基;
  2. 显示表示最佳近似解;
  3. 根据内积求系数;

2.4 度量矩阵

定义: V V V是一个内积空间, α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn V V V的一组基,取 α , β ∈ V , α = x 1 α 1 + x 2 α 2 + . . . + x n α n , β = y 1 α 1 + y 2 α 2 + . . . + y n α n \alpha,\beta\in V,\alpha=x_1\alpha_1+x_2\alpha_2+...+x_n\alpha_n,\beta=y_1\alpha_1+y_2\alpha_2+...+y_n\alpha_n α,βV,α=x1α1+x2α2+...+xnαn,β=y1α1+y2α2+...+ynαn

⇒ ( α , β ) = ( Σ i = 1 n x i α i , Σ j = 1 n y j α j ) = Σ i = 1 n Σ j = 1 n x i y j ‾ ( α i , α j ) = ( y 1 ‾ , y 2 ‾ , . . . , y n ‾ ) [ ( α 1 , α 1 ) ( α 2 , α 1 ) . . . ( α n , α 1 ) ( α 1 , α 2 ) ( α 2 , α 2 ) . . . ( α n , α 2 ) . . . . . . . . . ( α 1 , α n ) ( α 2 , α n ) . . . ( α n , α n ) ] ( x 1 , x 2 , . . . , x n ) T \Rightarrow (\alpha,\beta)=(\Sigma_{i=1}^nx_i\alpha_i,\Sigma_{j=1}^ny_j\alpha_j)=\Sigma_{i=1}^n\Sigma_{j=1}^nx_i\overline{y_j}(\alpha_i,\alpha_j)=(\overline{y_1},\overline{y_2},...,\overline{y_n})\begin{bmatrix}(\alpha_1,\alpha_1)&(\alpha_2,\alpha_1)&...&(\alpha_n,\alpha_1)\\(\alpha_1,\alpha_2)&(\alpha_2,\alpha_2)&...&(\alpha_n,\alpha_2)\\.&.& &.\\.&.& &.\\.&.& &.\\(\alpha_1,\alpha_n)&(\alpha_2,\alpha_n)&...&(\alpha_n,\alpha_n)\end{bmatrix}(x_1,x_2,...,x_n)^T (α,β)=(Σi=1nxiαi,Σj=1nyjαj)=Σi=1nΣj=1nxiyj(αi,αj)=(y1,y2,...,yn)(α1,α1)(α1,α2)...(α1,αn)(α2,α1)(α2,α2)...(α2,αn).........(αn,α1)(αn,α2)...(αn,αn)(x1,x2,...,xn)T

其中 G = [ ( α 1 , α 1 ) ( α 2 , α 1 ) . . . ( α n , α 1 ) ( α 1 , α 2 ) ( α 2 , α 2 ) . . . ( α n , α 2 ) . . . . . . . . . ( α 1 , α n ) ( α 2 , α n ) . . . ( α n , α n ) ] G=\begin{bmatrix}(\alpha_1,\alpha_1)&(\alpha_2,\alpha_1)&...&(\alpha_n,\alpha_1)\\(\alpha_1,\alpha_2)&(\alpha_2,\alpha_2)&...&(\alpha_n,\alpha_2)\\.&.& &.\\.&.& &.\\.&.& &.\\(\alpha_1,\alpha_n)&(\alpha_2,\alpha_n)&...&(\alpha_n,\alpha_n)\end{bmatrix} G=(α1,α1)(α1,α2)...(α1,αn)(α2,α1)(α2,α2)...(α2,αn).........(αn,α1)(αn,α2)...(αn,αn) α , β \alpha,\beta α,β的度量矩阵。

性质1:

易知 G G G是共轭对称矩阵(Hermite阵);

又因为 x ∗ G x > 0 ⇒ G x^*Gx>0\Rightarrow G xGx>0G是正定矩阵;

总结:度量矩阵是共轭对称的正定矩阵

性质2:

α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn是标准正交基时, G = I G=I G=I;

性质3:

V V V在两组不同基下的度量矩阵是合同关系,即: P ∗ A P = B ,    A , B P^*AP=B,\ \ A,B PAP=B,  A,B分别是两组基下的度量矩阵, P P P是两组基的过渡矩阵。

证明(作业4):

α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn以及 β 1 , β 2 , . . . , β n \beta_1,\beta_2,...,\beta_n β1,β2,...,βn V V V的两组基,基下的度量矩阵分别是 A , B , ∀ α , β ∈ V , ( α 1 , α 2 , . . . , α n ) = ( β 1 , β 2 , . . . , β n ) ⋅ P , P A,B,\forall\alpha,\beta\in V,(\alpha_1,\alpha_2,...,\alpha_n)=(\beta_1,\beta_2,...,\beta_n)\cdot P,P A,B,α,βV,(α1,α2,...,αn)=(β1,β2,...,βn)P,P为过度矩阵

α = ( α 1 , α 2 , . . . , α n ) X 1 = ( β 1 , β 2 , . . . , β n ) ⋅ P ⋅ X 1 \alpha=(\alpha_1,\alpha_2,...,\alpha_n)X_1=(\beta_1,\beta_2,...,\beta_n)\cdot P\cdot X_1 α=(α1,α2,...,αn)X1=(β1,β2,...,βn)PX1

β = ( α 1 , α 2 , . . . , α n ) Y 1 = ( β 1 , β 2 , . . . , β n ) ⋅ P ⋅ Y 1 \beta=(\alpha_1,\alpha_2,...,\alpha_n)Y_1=(\beta_1,\beta_2,...,\beta_n)\cdot P \cdot Y_1 β=(α1,α2,...,αn)Y1=(β1,β2,...,βn)PY1

α = ( β 1 , β 2 , . . . , β n ) X 2 , β = ( β 1 , β 2 , . . . , β n ) Y 2 \alpha=(\beta_1,\beta_2,...,\beta_n)X_2,\beta=(\beta_1,\beta_2,...,\beta_n)Y_2 α=(β1,β2,...,βn)X2,β=(β1,β2,...,βn)Y2

⇒ X 2 = P X 1 , Y 2 = P Y 1 , ( α , β ) = Y 1 ∗ A X 1 = Y 2 ∗ B X 2 = ( P Y 1 ) ∗ B ( P X 1 ) = Y 1 ∗ ( P ∗ B P ) X 1 \Rightarrow X_2=PX_1,Y_2=PY_1,(\alpha,\beta)=Y_1^*AX_1=Y_2^*BX_2=(PY_1)^*B(PX_1)=Y_1^*(P^*BP)X_1 X2=PX1,Y2=PY1,(α,β)=Y1AX1=Y2BX2=(PY1)B(PX1)=Y1(PBP)X1

⇒ A = P ∗ B P \Rightarrow A=P^*BP A=PBP,证毕。

2.5 内积矩阵的特殊线性变换

2.5.1 伴随变换

定义:设V是内积空间, σ , τ ∈ L ( V ) , ∀ α , β ∈ V , ( σ ( α ) , β ) = ( α , τ ( β ) ) \sigma,\tau\in L(V),\forall \alpha,\beta\in V,(\sigma(\alpha),\beta)=(\alpha,\tau(\beta)) σ,τL(V),α,βV,(σ(α),β)=(α,τ(β)),则称 τ 是 σ \tau是\sigma τσ的伴随变换

等价含义:

( α 1 , α 2 , . . . , α n ) (\alpha_1,\alpha_2,...,\alpha_n) (α1,α2,...,αn) V V V的一组标准正交基,

α = x 1 α 1 + x 2 α 2 + . . . + x n α n = ( α 1 , α 2 , . . . , α n ) ⋅ X \alpha=x_1\alpha_1+x_2\alpha_2+...+x_n\alpha_n=(\alpha_1,\alpha_2,...,\alpha_n)\cdot X α=x1α1+x2α2+...+xnαn=(α1,α2,...,αn)X

β = y 1 α 1 + y 2 α 2 + . . . + y n α n = ( α 1 , α 2 , . . . , α n ) ⋅ Y \beta=y_1\alpha_1+y_2\alpha_2+...+y_n\alpha_n=(\alpha_1,\alpha_2,...,\alpha_n)\cdot Y β=y1α1+y2α2+...+ynαn=(α1,α2,...,αn)Y

σ ( α 1 , α 2 , . . . , α n ) = ( α 1 , α 2 , . . . , α n ) ⋅ A \sigma(\alpha_1,\alpha_2,...,\alpha_n)=(\alpha_1,\alpha_2,...,\alpha_n)\cdot A σ(α1,α2,...,αn)=(α1,α2,...,αn)A

τ ( α 1 , α 2 , . . . , α n ) = ( α 1 , α 2 , . . . , α n ) ⋅ B \tau(\alpha_1,\alpha_2,...,\alpha_n)=(\alpha_1,\alpha_2,...,\alpha_n)\cdot B τ(α1,α2,...,αn)=(α1,α2,...,αn)B

其中 A , B A,B A,B分别是 σ , τ \sigma,\tau σ,τ ( α 1 , α 2 , . . . , α n ) (\alpha_1,\alpha_2,...,\alpha_n) (α1,α2,...,αn)下的矩阵

⇒ \Rightarrow

σ ( α ) = σ ( α 1 , α 2 , . . . , α n ) ⋅ ( x 1 , x 2 , . . . , x n ) T = ( α 1 , α 2 , . . . , α n ) ⋅ A X \sigma(\alpha)=\sigma(\alpha_1,\alpha_2,...,\alpha_n)\cdot(x_1,x_2,...,x_n)^T=(\alpha_1,\alpha_2,...,\alpha_n)\cdot AX σ(α)=σ(α1,α2,...,αn)(x1,x2,...,xn)T=(α1,α2,...,αn)AX

τ ( β ) = τ ( α 1 , α 2 , . . . , α n ) ⋅ ( y 1 , y 2 , . . . , y n ) T = ( α 1 , α 2 , . . . , α n ) ⋅ B Y \tau(\beta)=\tau(\alpha_1,\alpha_2,...,\alpha_n)\cdot(y_1,y_2,...,y_n)^T=(\alpha_1,\alpha_2,...,\alpha_n)\cdot BY τ(β)=τ(α1,α2,...,αn)(y1,y2,...,yn)T=(α1,α2,...,αn)BY

标准正交基的度量矩阵为单位矩阵

⇒ \Rightarrow

( σ ( α ) , β ) = Y ∗ A X (\sigma(\alpha),\beta)= Y^*AX (σ(α),β)=YAX

( α , τ ( β ) ) = ( B Y ) ∗ X = Y ∗ B ∗ A (\alpha,\tau(\beta))= (BY)^*X=Y^*B^*A (α,τ(β))=(BY)X=YBA

( σ ( α ) , β ) = ( α , τ ( β ) ) ⇒ A = B ∗ (\sigma(\alpha),\beta)=(\alpha,\tau(\beta))\Rightarrow A=B^* (σ(α),β)=(α,τ(β))A=B

重要结论:伴随变换基下的矩阵互为共轭转置

2.5.2 等积变换

定义:设V是内积空间, σ ∈ L ( V ) , ∀ α , β ∈ V , ( α , β ) = ( σ ( α ) , σ ( β ) ) \sigma\in L(V),\forall \alpha,\beta\in V,(\alpha,\beta)=(\sigma(\alpha),\sigma(\beta)) σL(V),α,βV,(α,β)=(σ(α),σ(β))

性质:以下命题等价

1) σ ∈ L ( V ) \sigma\in L(V) σL(V)是等积变换

2) σ ∈ L ( V ) \sigma\in L(V) σL(V)是等距变换: ∣ ∣ α − β ∣ ∣ = ∣ ∣ σ ( α ) − σ ( β ) ∣ ∣ ||\alpha-\beta||=||\sigma(\alpha)-\sigma(\beta)|| αβ=σ(α)σ(β)

3) σ ∈ L ( V ) \sigma\in L(V) σL(V)是等长变换: ∣ ∣ α ∣ ∣ = ∣ ∣ σ ( α ) ∣ ∣ ||\alpha||=||\sigma(\alpha)|| α=σ(α)

4) σ ∈ L ( V ) \sigma\in L(V) σL(V)是正交变换: ( e 1 , e 2 , . . . , e n ) 是 V (e_1,e_2,...,e_n)是V (e1,e2,...,en)V的一组标准正交基,则 ( σ ( α 1 ) , σ ( α 2 ) , . . . , σ ( α n ) ) (\sigma(\alpha_1),\sigma(\alpha_2),...,\sigma(\alpha_n)) (σ(α1),σ(α2),...,σ(αn))也是一组标准正交基

5) ( e 1 , e 2 , . . . , e n ) 是 V (e_1,e_2,...,e_n)是V (e1,e2,...,en)V的一组标准正交基, σ ( e 1 , e 2 , . . . , e n ) = ( e 1 , e 2 , . . . , e n ) ⋅ A ⇒ A ∗ A = A A ∗ = E \sigma(e_1,e_2,...,e_n)=(e_1,e_2,...,e_n)\cdot A\Rightarrow A^*A=AA^*=E σ(e1,e2,...,en)=(e1,e2,...,en)AAA=AA=E A A A是正交矩阵)

注: A A A是正交矩阵    ⟺    \iff A A A是酉矩阵 ( A ∗ = A − 1 ) (A^*=A^{-1}) (A=A1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值