《矩阵理论》大萌课程笔记 - 矩阵函数

《矩阵理论》大萌课程笔记 - 矩阵函数


总目录

章节名称与链接
线性空间与线性变换线性空间与子空间
有限维线性空间、基、维数
线性变换
内积空间
特征值与特征向量
特殊矩阵
矩阵分解
矩阵函数

声明

  本专栏博客用于记录上海交通大学研究生课程《矩阵理论》笔记,课程任教老师为邓大萌老师。所有内容均为博主个人的课堂笔记,包括课堂例题与证明。如有不妥、错误之处欢迎大家指正。



1 范数

1.1 向量范数

定义: α ∈ C n , α = ( x 1 , x 2 , . . . , x n ) T ∈ C n \alpha\in C^n,\alpha=(x_1,x_2,...,x_n)^T\in C^n αCn,α=(x1,x2,...,xn)TCn,当运算满足以下三个条件时称为向量范数:

1)正定性: f ( α ) > 0 f(\alpha)>0 f(α)>0

2)齐次性: f ( k ⋅ α ) = k ⋅ f ( α ) f(k\cdot\alpha)=k\cdot f(\alpha) f(kα)=kf(α)

3)三角关系: f ( α + β ) ≤ f ( α ) + f ( β ) f(\alpha+\beta)\le f(\alpha)+f(\beta) f(α+β)f(α)+f(β)

常用范数及其符号表示:

l 1 l_1 l1范数: Σ i = 1 n ∣ x i ∣ \Sigma_{i=1}^n|x_i| Σi=1nxi

l 2 l_2 l2范数: ∣ ∣ α ∣ ∣ = ( Σ i = 1 n x i 2 ) 1 2 ||\alpha||=(\Sigma_{i=1}^nx_i^2)^{\frac{1}{2}} α=(Σi=1nxi2)21

l p l_p lp范数: ∣ ∣ α ∣ ∣ p = ( Σ i = 1 n x i p ) 1 p ||\alpha||_p=(\Sigma_{i=1}^nx_i^p)^{\frac{1}{p}} αp=(Σi=1nxip)p1

l ∞ l_\infin l范数: m a x 1 ≤ i ≤ n ( x i ) max_{1\le i\le n}(x_i) max1in(xi)

1.2 矩阵范数

定义 A = ( a i j ) n × n , 1 ≤ i , j ≤ n , ∣ ∣ ∣ A ∣ ∣ ∣ p = ( Σ i = 1 , j = 1 n × n ∣ a i j ∣ p ) 1 p A=(a_{ij})_{n\times n},1\le i,j\le n,|||A|||_p=(\Sigma_{i=1,j=1}^{n\times n}|a_{ij}|^p)^{\frac1p} A=(aij)n×n,1i,jn,Ap=(Σi=1,j=1n×naijp)p1,除了需要满足上面的三个条件外还需要满足额外的第四个条件:

4) ∣ ∣ ∣ A B ∣ ∣ ∣ ≤ ∣ ∣ ∣ A ∣ ∣ ∣ ⋅ ∣ ∣ ∣ B ∣ ∣ ∣ |||AB|||\le|||A|||\cdot |||B||| ABAB

衍生定义:

F F F范数:取 p = 2 , ∣ ∣ ∣ A ∣ ∣ ∣ 2 = ( Σ i = 1 , j = 1 n × n ∣ a i j ∣ 2 ) 1 2 = ( t r ( A A ∗ ) ) 1 2 p=2,|||A|||_2=(\Sigma_{i=1,j=1}^{n\times n}|a_{ij}|^2)^{\frac12}=(tr(AA^*))^{\frac12} p=2,A2=(Σi=1,j=1n×naij2)21=(tr(AA))21

相容:若 ∣ ∣ A x ∣ ∣ ≤ ∣ ∣ ∣ A ∣ ∣ ∣ ⋅ ∣ ∣ x ∣ ∣ ||Ax||\le |||A|||\cdot||x|| AxAx A A A x x x相容

1.3 算子范数

定义:已知某向量范数为 a a a范数,取矩阵 A A A使得 ∣ ∣ ∣ A ∣ ∣ ∣ = m a x x ∈ C n , x ≠ 0 ∣ ∣ A x ∣ ∣ a ∣ ∣ x ∣ ∣ a = m a x x ∈ C n , ∣ ∣ x ∣ ∣ a = 1 ∣ ∣ A x ∣ ∣ a |||A|||=max_{x\in C^n,x\not=0}\frac{||Ax||_a}{||x||_a}=max_{x\in C^n,||x||_a=1}{||Ax||_a} A=maxxCn,x=0xaAxa=maxxCn,xa=1Axa,此时的 ∣ ∣ ∣ A ∣ ∣ ∣ |||A||| A ∣ ∣ x ∣ ∣ ||x|| x相容,称 ∣ ∣ ∣ A ∣ ∣ ∣ |||A||| A为算子范数;

例:向量 x x x的二范数导出的与其相容的算子范数是什么?

解: ∣ ∣ ∣ A ∣ ∣ ∣ = m a x x ∈ C n , ∣ ∣ x ∣ ∣ 2 = 1 ∣ ∣ A x ∣ ∣ 2 |||A|||=max_{x\in C^n,||x||_2=1}{||Ax||_2} A=maxxCn,x2=1Ax2

∣ ∣ A x ∣ ∣ 2 2 = ( A x , A x ) = x ∗ A ∗ A x ||Ax||_2^2=(Ax,Ax)=x^*A^*Ax Ax22=(Ax,Ax)=xAAx

​ 又易知 A ∗ A A^*A AA是半正定矩阵,可以酉对角化,设 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn是其特征值, α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn是其对应的单位正交特征向量;

​ 则 x = x 1 α 1 + x 2 α 2 + . . . + x n α n x=x_1\alpha_1+x_2\alpha_2+...+x_n\alpha_n x=x1α1+x2α2+...+xnαn

⇒ ∣ ∣ A x ∣ ∣ 2 2 = x ∗ A ∗ A x = ( x ‾ 1 α 1 ∗ + x ‾ 2 α 2 ∗ + . . . + x ‾ n α n ∗ ) A ∗ A ( x 1 α 1 + x 2 α 2 + . . . + x n α n ) \Rightarrow ||Ax||_2^2=x^*A^*Ax=(\overline x_1\alpha_1^*+\overline x_2\alpha_2^*+...+\overline x_n\alpha_n^*)A^*A(x_1\alpha_1+x_2\alpha_2+...+x_n\alpha_n) Ax22=xAAx=(x1α1+x2α2+...+xnαn)AA(x1α1+x2α2+...+xnαn)

= ( x ‾ 1 α 1 ∗ + x ‾ 2 α 2 ∗ + . . . + x ‾ n α n ∗ ) ⋅ ( x 1 λ 1 α 1 + x 2 λ 2 α 2 + . . . + x n λ n α n ) = λ 1 ∣ x 1 ∣ 2 + λ 2 ∣ x 2 ∣ 2 + . . . λ n ∣ x n ∣ 2 =(\overline x_1\alpha_1^*+\overline x_2\alpha_2^*+...+\overline x_n\alpha_n^*)\cdot(x_1\lambda_1\alpha_1+x_2\lambda_2\alpha_2+...+x_n\lambda_n\alpha_n)=\lambda_1|x_1|^2+\lambda_2|x_2|^2+...\lambda_n|x_n|^2 =(x1α1+x2α2+...+xnαn)(x1λ1α1+x2λ2α2+...+xnλnαn)=λ1x12+λ2x22+...λnxn2

≤ m a x 1 ≤ i ≤ n ( λ i ) \le max_{1\le i\le n}(\lambda_i) max1in(λi),不妨令 λ 1 = m a x 1 ≤ i ≤ n ( λ i ) \lambda_1=max_{1\le i\le n}(\lambda_i) λ1=max1in(λi),当 x = α 1 x=\alpha_1 x=α1时取等。

⇒ ∣ ∣ ∣ A ∣ ∣ ∣ = m a x x ∈ C n , ∣ ∣ x ∣ ∣ 2 = 1 ∣ ∣ A x ∣ ∣ 2 = λ 1 = ρ ( A ∗ A ) , ρ ( A ∗ A ) \Rightarrow |||A|||=max_{x\in C^n,||x||_2=1}{||Ax||_2}=\sqrt{\lambda_1}=\sqrt{\rho(A^*A)},\rho(A^*A) A=maxxCn,x2=1Ax2=λ1 =ρ(AA) ρ(AA)为谱半径。

​ 因此称为谱范数。

2 序列收敛性

2.1 向量序列的收敛性

定义:设向量序列 x ( k ) = ( x 1 ( k ) , x 2 ( k ) , . . . , x n ( k ) ) T x^{(k)}=(x_1^{(k)},x_2^{(k)},...,x_n^{(k)})^T x(k)=(x1(k),x2(k),...,xn(k))T,其中 x i ( k ) x_i^{(k)} xi(k)表示一个 k k k维向量,若 x k x^k xk收敛,则存在 x = ( x 1 , x 2 , . . . , x n ) T x=(x_1,x_2,...,x_n)^T x=(x1,x2,...,xn)T使得 l i m k → ∞ x ( k ) = x = ( x 1 , x 2 , . . . , x n ) T lim_{k\rightarrow\infin}x^{(k)}=x=(x_1,x_2,...,x_n)^T limkx(k)=x=(x1,x2,...,xn)T,或者表示为 l i m k → ∞ x i ( k ) = x i , 1 ≤ i ≤ n lim_{k\rightarrow\infin}x_i^{(k)}=x_i,1\le i\le n limkxi(k)=xi,1in

性质: l i m k → ∞ x ( k ) = x    ⟺    l i m k → ∞ ∣ x ( k ) − x ∣ = 0 lim_{k\rightarrow\infin}x^{(k)}=x \iff lim_{k\rightarrow\infin}|x^{(k)}-x|=0 limkx(k)=xlimkx(k)x=0

2.2 矩阵序列的收敛性

定义:设矩阵序列 A ( k ) = ( a i j ( k ) ) m × n A^{(k)}=(a_{ij}^{(k)})_{m\times n} A(k)=(aij(k))m×n,其中 a i j ( k ) a_{ij}^{(k)} aij(k)表示一个 k k k维向量,若 A ( k ) A^{(k)} A(k)收敛,则存在 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n使得 l i m k → ∞ A ( k ) = A = ( a i j ) m × n lim_{k\rightarrow \infin}A^{(k)}=A=(a_{ij})_{m\times n} limkA(k)=A=(aij)m×n,或者表示为 l i m k → ∞ a i j ( k ) = a i j , 1 ≤ i ≤ m , 1 ≤ j ≤ n lim_{k\rightarrow\infin}a_{ij}^{(k)}=a_{ij},1\le i \le m,1\le j \le n limkaij(k)=aij,1im,1jn

矩阵幂序列的收敛性:

矩阵幂序列形如 A 0 , A 1 , A 2 , . . . A^0,A^1,A^2,... A0,A1,A2,...

第一步:化约旦标准型 P − 1 A P = J = [ J 1 J 2 . . . J s ] , J i = [ λ 1 1 λ 2 1 . . . . . . λ n i ] n i × n i P^{-1}AP=J=\begin{bmatrix}J_1\\&J_2\\&&...\\&&&J_s\end{bmatrix},J_i=\begin{bmatrix}\lambda_1&1\\&\lambda_2&1\\&&...&...\\&&&\lambda_{n_i}\end{bmatrix}_{n_i\times n_i} P1AP=J=J1J2...Js,Ji=λ11λ21......λnini×ni

第二步:求解单个约旦块 k k k次方表达式 J i k = [ λ i k C k 1 λ i k − 1 . . . C k k − n i + 1 λ i k − n i + 1 λ i k . . . . . . . . . . . . λ i k ] J_i^{k}=\begin{bmatrix}\lambda_i^k&C_k^1\lambda_i^{k-1}&...&C_k^{k-n_i+1}\lambda_i^{k-n_i+1}\\&\lambda_i^k&...&...\\&&...&...\\&&&\lambda_i^k\end{bmatrix} Jik=λikCk1λik1λik.........Ckkni+1λikni+1......λik

第三步:计算收敛性,case1: λ i < 1 \lambda_i<1 λi<1;case2 : λ i = 1 且 n i = 1 \lambda_i=1且n_i=1 λi=1ni=1

推论 ρ ( A ) < 1    ⟺    A k = 0 \rho(A)<1\iff A^k=0 ρ(A)<1Ak=0

例:证明: ρ ( A ) ≤ ∣ ∣ ∣ A ∣ ∣ ∣ \rho(A)\le |||A||| ρ(A)A

证明:设 B = A ϵ + ∣ ∣ ∣ A ∣ ∣ ∣ , ϵ > 0 ⇒ ∣ ∣ ∣ B ∣ ∣ ∣ < 1 ⇒ l i m k → ∞ ∣ ∣ ∣ B ∣ ∣ ∣ k = 0 ⇒ l i m k → ∞ ∣ ∣ ∣ B k ∣ ∣ ∣ = 0 ⇒ l i m k → ∞ B k = 0 ⇒ ρ ( B ) < 1 B=\frac{A}{\epsilon+|||A|||},\epsilon >0\Rightarrow |||B|||<1\Rightarrow lim_{k\rightarrow\infin}|||B|||^k=0\Rightarrow lim_{k\rightarrow\infin}|||B^k|||=0\Rightarrow lim_{k\rightarrow\infin}B^k=0\Rightarrow \rho(B)<1 B=ϵ+AA,ϵ>0B<1limkBk=0limkBk=0limkBk=0ρ(B)<1

⇒ ρ ( A ϵ + ∣ ∣ ∣ A ∣ ∣ ∣ ) < 1 ⇒ ρ ( A ) < ϵ + ∣ ∣ ∣ A ∣ ∣ ∣ ⇒ ρ ( A ) ≤ ∣ ∣ ∣ A ∣ ∣ ∣ \Rightarrow \rho(\frac{A}{\epsilon+|||A|||})<1\Rightarrow \rho(A) < \epsilon+|||A|||\Rightarrow \rho(A)\le |||A||| ρ(ϵ+AA)<1ρ(A)<ϵ+Aρ(A)A

矩阵幂级数

A ( k ) A^{(k)} A(k)是一个矩阵序列,则 Σ k = 0 ∞ A ( k ) \Sigma_{k=0}^\infin A^{(k)} Σk=0A(k)称之为矩阵级数, Σ k = 0 ∞ A ( k ) = [ Σ k = 0 ∞ a 11 ( k ) . . . Σ k = 0 ∞ a 1 n ( k ) . . . . . . . . . Σ k = 0 ∞ a n 1 ( k ) . . . Σ k = 0 ∞ a n n ( k ) ] \Sigma_{k=0}^\infin A^{(k)}=\begin{bmatrix}\Sigma_{k=0}^\infin a_{11}^{(k)}&...&\Sigma_{k=0}^\infin a_{1n}^{(k)}\\...&...&...\\\Sigma_{k=0}^\infin a_{n1}^{(k)}&...&\Sigma_{k=0}^\infin a_{nn}^{(k)}\end{bmatrix} Σk=0A(k)=Σk=0a11(k)...Σk=0an1(k).........Σk=0a1n(k)...Σk=0ann(k) Σ k = 0 ∞ a k ⋅ A k \Sigma_{k=0}^\infin a_k\cdot A^k Σk=0akAk称为矩阵幂级数。

3 矩阵函数求解

定义:未知量为矩阵的函数称为矩阵函数

方法:使用Hamilton-Cayley定理

例1:已知 A 2 = A A^2=A A2=A,求 e A e^A eA

解:由 A 2 = A A^2=A A2=A可得知矩阵 A A A的一个零化多项式为 f ( λ ) = λ 2 − λ f(\lambda)=\lambda^2-\lambda f(λ)=λ2λ

⇒ \Rightarrow e λ = ϕ ( λ ) ⋅ f ( λ ) + a λ + b e^\lambda=\phi(\lambda)\cdot f(\lambda)+a\lambda+b eλ=ϕ(λ)f(λ)+aλ+b,将 λ = 0 , λ = 1 \lambda=0,\lambda=1 λ=0,λ=1分别代入方程有:

{ b = e 0 = 1 a + b = e 1 = e \begin{cases}b=e^0=1\\a+b=e^1=e\end{cases} {b=e0=1a+b=e1=e,解得 { a = e − 1 b = 1 \begin{cases}a=e-1\\b=1\end{cases} {a=e1b=1

⇒ e λ = ϕ ( λ ) ⋅ f ( λ ) + ( e − 1 ) λ + 1 \Rightarrow e^\lambda=\phi(\lambda)\cdot f(\lambda)+(e-1)\lambda+1 eλ=ϕ(λ)f(λ)+(e1)λ+1

⇒ e A = ( e − 1 ) A + I \Rightarrow e^A=(e-1)A+I eA=(e1)A+I(注意,常数项要改为 I I I

例2:已知 A 2 + 2 A + E = 0 A^2+2A+E=0 A2+2A+E=0,求 c o s 2 A cos2A cos2A

解:易知 A A A的最小多项式可以表示为 f ( λ ) = λ 2 + 2 λ + 1 f(\lambda)=\lambda^2+2\lambda+1 f(λ)=λ2+2λ+1

c o s 2 λ = ϕ ( λ ) ⋅ f ( λ ) + a λ + b cos2\lambda=\phi(\lambda)\cdot f(\lambda)+a\lambda+b cos2λ=ϕ(λ)f(λ)+aλ+b,将 λ = − 1 \lambda=-1 λ=1带入

⇒ { c o s ( − 2 ) = − a + b − 2 s i n ( − 2 ) = a ⇒ { a = 2 s i n ( 2 ) b = 2 s i n ( 2 ) + c o s ( 2 ) \Rightarrow \begin{cases}cos(-2)=-a+b\\-2sin(-2)=a\end{cases}\Rightarrow \begin{cases}a=2sin(2)\\b=2sin(2)+cos(2)\end{cases} {cos(2)=a+b2sin(2)=a{a=2sin(2)b=2sin(2)+cos(2)

⇒ c o s 2 λ = ϕ ( λ ) ⋅ f ( λ ) + 2 s i n ( 2 ) λ + 2 s i n ( 2 ) + c o s ( 2 ) \Rightarrow cos2\lambda=\phi(\lambda)\cdot f(\lambda)+2sin(2)\lambda+2sin(2)+cos(2) cos2λ=ϕ(λ)f(λ)+2sin(2)λ+2sin(2)+cos(2)

⇒ c o s 2 A = 2 s i n ( 2 ) A + ( 2 s i n ( 2 ) + c o s ( 2 ) ) I \Rightarrow cos2A=2sin(2)A+(2sin(2)+cos(2))I cos2A=2sin(2)A+(2sin(2)+cos(2))I

例3:已知矩阵 A = [ 0 1 1 0 1 0 ] A=\begin{bmatrix}0&1&1\\&0&1\\&&0\end{bmatrix} A=010110,求 c o s 2 A − s i n 2 A cos2A-sin2A cos2Asin2A

解:易知 A 3 = 0 ⇒ A A^3=0\Rightarrow A A3=0A的零化多项式为 f ( λ ) = λ 3 f(\lambda)=\lambda^3 f(λ)=λ3

​ 设 c o s 2 λ − s i n 2 λ = ϕ ( λ ) ⋅ f ( λ ) + a λ 2 + b λ + c cos2\lambda-sin2\lambda=\phi(\lambda)\cdot f(\lambda)+a\lambda^2+b\lambda+c cos2λsin2λ=ϕ(λ)f(λ)+aλ2+bλ+c,将 λ = 0 \lambda=0 λ=0带入得

{ c = c o s 0 − s i n 0 = 1 b = − 2 s i n 0 − 2 c o s 0 = − 2 2 a = − 4 c o s 0 + 4 s i n 0 = − 4 ⇒ { a = − 2 b = − 2 c = 1 \begin{cases}c=cos0-sin0=1\\b=-2sin0-2cos0=-2\\2a=-4cos0+4sin0=-4\end{cases}\Rightarrow \begin{cases}a=-2\\b=-2\\c=1\end{cases} c=cos0sin0=1b=2sin02cos0=22a=4cos0+4sin0=4a=2b=2c=1

⇒ c o s 2 λ − s i n 2 λ = ϕ ( λ ) ⋅ f ( λ ) − 2 λ 2 − 2 λ + 1 \Rightarrow cos2\lambda-sin2\lambda=\phi(\lambda)\cdot f(\lambda)-2\lambda^2-2\lambda+1 cos2λsin2λ=ϕ(λ)f(λ)2λ22λ+1

⇒ c o s 2 A − s i n 2 A = − 2 A 2 − 2 A + E = [ 1 − 2 − 4 1 − 2 1 ] \Rightarrow cos2A-sin2A=-2A^2-2A+E=\begin{bmatrix}1&-2&-4\\&1&-2\\&&1\end{bmatrix} cos2Asin2A=2A22A+E=121421

注意:如果给出了 A A A的具体形式,就要写出结果的具体形式

例4(大题):已知 A = [ 2 1 4 0 2 0 0 3 1 ] A=\begin{bmatrix}2&1&4\\0&2&0\\0&3&1\end{bmatrix} A=200123401,求 A A A的约旦标准型以及 e A t e^{At} eAt

解:

第一步:求 A A A的特征值

λ \lambda λ A A A的特征值,则计算 ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0 ( λ − 2 ) 2 ( λ − 1 ) = 0 (\lambda-2)^2(\lambda-1)=0 (λ2)2(λ1)=0

第二步:求约旦标准型

计算 n − r ( A − 2 I ) = 1 n-r(A-2I)=1 nr(A2I)=1可知特征值 λ = 2 \lambda=2 λ=2对应1个特征向量,因此 A A A的约旦标准型为 [ 1 2 1 2 ] \begin{bmatrix}1\\&2&1\\&&2\end{bmatrix} 1212

第三步:求最小多项式

⇒ A \Rightarrow A A的最小多项式为 f ( λ ) = ( λ − 2 ) 2 ( λ − 2 ) f(\lambda)=(\lambda-2)^2(\lambda-2) f(λ)=(λ2)2(λ2)

第四步:用Hermite-Cayley定理求得矩阵函数

e λ t = ϕ ( λ ) ⋅ f ( λ ) + a λ 2 + b λ + c e^{\lambda t}=\phi(\lambda)\cdot f(\lambda)+a\lambda^2+b\lambda+c eλt=ϕ(λ)f(λ)+aλ2+bλ+c

⇒ { e t = a + b + c e 2 t = 4 a + 2 b + c t e 2 t = 4 a + b ⇒ \Rightarrow\begin{cases}e^t=a+b+c\\e^{2t}=4a+2b+c\\te^{2t}=4a+b\end{cases}\Rightarrow et=a+b+ce2t=4a+2b+cte2t=4a+b

注意:也要写出具体的表达式

例5:已知矩阵 A 4 × 4 、 B 4 × 4 A_{4\times 4}、B_{4\times 4} A4×4B4×4的最小多项式分别为 m A ( λ ) = ( λ − 1 ) 2 ( λ − 2 ) , m B ( λ ) = ( λ − 1 ) ( λ − 2 ) 2 m_A(\lambda)=(\lambda-1)^2(\lambda-2),m_B(\lambda)=(\lambda-1)(\lambda-2)^2 mA(λ)=(λ1)2(λ2),mB(λ)=(λ1)(λ2)2,求 [ A A − B B ] \begin{bmatrix}A&A-B\\&B\end{bmatrix} [AABB]的最小多项式。

解:已知相似矩阵的最小多项式相同, [ A A − B B ] = [ E E E ] [ A B ] [ E − E E ] \begin{bmatrix}A&A-B\\&B\end{bmatrix}=\begin{bmatrix}E&E\\&E\end{bmatrix}\begin{bmatrix}A\\&B\end{bmatrix}\begin{bmatrix}E&-E\\&E\end{bmatrix} [AABB]=[EEE][AB][EEE]

​ 又因为 [ E E E ] ⋅ [ E − E E ] = E 8 × 8 ⇒ [ A A − B B ] \begin{bmatrix}E&E\\&E\end{bmatrix}\cdot \begin{bmatrix}E&-E\\&E\end{bmatrix}=E_{8\times 8}\Rightarrow \begin{bmatrix}A&A-B\\&B\end{bmatrix} [EEE][EEE]=E8×8[AABB] [ A B ] \begin{bmatrix}A\\&B\end{bmatrix} [AB]相似

⇒ [ A A − B B ] \Rightarrow \begin{bmatrix}A&A-B\\&B\end{bmatrix} [AABB]的最小多项式为 m A ( λ ) , m B ( λ ) m_A(\lambda),m_B(\lambda) mA(λ),mB(λ)的最小公倍数,即 ( λ − 1 ) 2 ( λ − 2 ) 2 (\lambda-1)^2(\lambda-2)^2 (λ1)2(λ2)2

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值