《矩阵理论》大萌课程笔记 - 有限维线性空间、基、维数

《矩阵理论》大萌课程笔记 - 有限维线性空间、基、维数


总目录

章节名称与链接
线性空间与线性变换线性空间与子空间
有限维线性空间、基、维数
线性变换
内积空间
特征值与特征向量
特殊矩阵
矩阵分解
矩阵函数

声明

  本专栏博客用于记录上海交通大学研究生课程《矩阵理论》笔记,课程任教老师为邓大萌老师。所有内容均为博主个人的课堂笔记,包括课堂例题与证明。如有不妥、错误之处欢迎大家指正。



1 张成

一个空间由几个元素线性组合而成称为张成,符号: S p a n Span Span

2 线性相关与线性无关

2.1 定义与判定

  定义:若一组元素中任意一个元素都无法由其他元素线性表示,则该组元素线性无关。

  判定:设 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn为空间 V V V的元素,若0空间仅能由 0 ⋅ α 0 + 0 ⋅ α 2 + . . . + 0 ⋅ α n 0\cdot \alpha_0+0\cdot\alpha_2+...+0\cdot\alpha_n 0α0+0α2+...+0αn表示,则 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn线性无关

2.2 线性相关定理

α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn为空间 V V V的线性相关元素

  • ∃ α j , α j ∈ S p a n [ α 1 , α 2 , α j − 1 ] \exist \alpha_j, \alpha_j\in Span[\alpha_1, \alpha_2, \alpha_{j-1}] αj,αjSpan[α1,α2,αj1]

证明: 由 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn线性相关 ⇒ \Rightarrow 存在不全为0的系数 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn使得 k 1 ⋅ α 1 + k 2 ⋅ α 2 + . . . + k n ⋅ α n = 0 k_1\cdot\alpha_1+k_2\cdot\alpha_2+...+k_n\cdot\alpha_n=0 k1α1+k2α2+...+knαn=0

​ 取 j = m a x { i , k i ≠ 0 } j=max\{i,k_i\not=0 \} j=max{i,ki=0}

​ 则有 k 1 ⋅ α 1 + k 2 ⋅ α 2 + . . . + k j ⋅ α j = 0 ⇒ α j = − 1 k j Σ i = 0 j − 1 k i ⋅ α i k_1\cdot\alpha_1+k_2\cdot\alpha_2+...+k_j\cdot\alpha_j=0 \Rightarrow \alpha_j=-\frac{1}{k_j}\Sigma_{i=0}^{j-1}k_i\cdot\alpha_i k1α1+k2α2+...+kjαj=0αj=kj1Σi=0j1kiαi

∴ α j ∈ S p a n [ α 1 , α 2 , α j − 1 ] \therefore \alpha_j\in Span[\alpha_1, \alpha_2, \alpha_{j-1}] αjSpan[α1,α2,αj1]

  • S p a n [ α 1 , α 2 , . . . , α j − 1 , α j + 1 , . . . , α n ] ∈ S p a n [ α 1 , α 2 , . . . , α n ] Span[\alpha_1, \alpha_2, ...,\alpha_{j-1},\alpha_{j+1},...,\alpha_n]\in Span[\alpha_1, \alpha_2, ...,\alpha_n] Span[α1,α2,...,αj1,αj+1,...,αn]Span[α1,α2,...,αn]

3 有限维空间

  定义有限个元素 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn可以张成大空间V则称V为有限维空间,符号表示为 S p a n [ α 1 , α 2 , . . . , α n ] = V Span[\alpha_1, \alpha_2, ...,\alpha_n]=V Span[α1,α2,...,αn]=V

例1: P n [ R ] P_n[R] Pn[R](不超过n阶的多项式),是有限元空间

例2: P [ R ] P[R] P[R](无限阶多项式),是无限元空间

例3: R R R^R RR(函数空间),是无限元空间

4 基

  定义有限个线性无关【条件1】元素 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn可以张成大空间【条件2】V则称 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn为空间V的基,符号表示为 S p a n [ α 1 , α 2 , . . . , α n ] = V Span[\alpha_1, \alpha_2, ...,\alpha_n]=V Span[α1,α2,...,αn]=V

5 维数

5.1 定义

  对于有限维线性空间V,存在一组有限元素的基,称基的数目为维数,记作 d i m ( V ) dim(V) dim(V)

  先验知识:线性无关组数目 < =张成组数目

5.2 基的扩充定理

  若空间 V V V中的一组元素 α 1 , α 2 , . . . , α k \alpha_1,\alpha_2,...,\alpha_k α1,α2,...,αk线性无关,且 k < d i m ( V ) k<dim(V) k<dim(V),则可添加 n − k n-k nk个元素构成基

设其中 α 1 , α 2 , . . . , α k \alpha_1,\alpha_2,...,\alpha_k α1,α2,...,αk张成的空间为 U U U α k + 1 , α k + 2 , . . . , α n \alpha_{k+1},\alpha_{k+2},...,\alpha_n αk+1,αk+2,...,αn张成的空间为 W W W,则 V = U ⊕ W V=U\oplus W V=UW

例1: R n × n R^{n\times n} Rn×n :维数 n 2 n^2 n2,基为 E i j E_{ij} Eij

例2: R ∞ R^\infty R:维数无穷

例3: U = { 对 称 阵 } U=\{对称阵\} U={} :维数 1 2 n ( n + 1 ) \frac{1}{2}n(n+1) 21n(n+1),基为 E i i 和 E i j + E j i E_{ii}和E_{ij}+E_{ji} EiiEij+Eji

例4: U = { 三 角 阵 } U=\{三角阵\} U={}:维数 1 2 n ( n + 1 ) \frac{1}{2}n(n+1) 21n(n+1),基为 E i j , j < i E_{ij},j<i Eij,j<i

例5: U = { 反 对 称 阵 } U=\{反对称阵\} U={}:维数 1 2 n ( n − 1 ) \frac{1}{2}n(n-1) 21n(n1),基为 E i i 和 E i j − E j i E_{ii}和E_{ij}-E_{ji} EiiEijEji

5.3 维数定理

d i m ( U + W ) = d i m ( U ) + d i m ( W ) − d i m ( U ∩ W ) dim(U+W)=dim(U)+dim(W)-dim(U\cap W) dim(U+W)=dim(U)+dim(W)dim(UW)

证明:
t = d i m ( U ) , s = d i m ( W ) , r = d i m ( U ∩ W ) , U 中 的 基 用 β i 表 示 , W 中 的 基 用 γ i 表 示 , U ∩ W 的 基 用 α i 表 示 t=dim(U), s=dim(W), r = dim(U\cap W),U中的基用\beta_i 表示,W中的基用\gamma_i表示,U\cap W的基用\alpha_i表示 t=dim(U),s=dim(W),r=dim(UW)UβiWγiUWαi

根据基的扩充定理得: U = S p a n [ α 1 , α 2 , . . . , α r , β r + 1 , β r + 2 , . . . , β t ] U=Span[\alpha_1,\alpha_2,...,\alpha_r,\beta_{r+1},\beta_{r+2},...,\beta_{t}] U=Span[α1,α2,...,αr,βr+1,βr+2,...,βt]

W = S p a n [ α 1 , α 2 , . . . , α r , γ r + 1 , γ r + 2 , . . . , γ t ] W=Span[\alpha_1,\alpha_2,...,\alpha_r,\gamma_{r+1},\gamma_{r+2},...,\gamma_{t}] W=Span[α1,α2,...,αr,γr+1,γr+2,...,γt]

即证: α 1 , α 2 , . . . , α r , β r + 1 , β r + 2 , . . . , β t , γ t + 1 , γ t + 2 , . . . , γ t + s − r \alpha_1,\alpha_2,...,\alpha_r,\beta_{r+1},\beta_{r+2},...,\beta_{t},\gamma_{t+1},\gamma_{t+2},...,\gamma_{t+s-r} α1,α2,...,αr,βr+1,βr+2,...,βt,γt+1,γt+2,...,γt+sr U + W U+W U+W的基,转而证该组向量线性无关且可以张成 U + W U+W U+W空间

张成证明:略

线性无关证明:即证: k 1 ⋅ α 1 + . . . + k r ⋅ α r + k r + 1 ⋅ β r + 1 + . . . + k t ⋅ β t + k t + 1 ⋅ γ r + 1 + . . . + k t + s − r ⋅ γ s = 0 k_1\cdot\alpha_1+...+k_r\cdot\alpha_r+k_{r+1}\cdot\beta_{r+1}+...+k_t\cdot\beta_t+k_{t+1}\cdot\gamma_{r+1}+...+k_{t+s-r}\cdot\gamma_{s}=0 k1α1+...+krαr+kr+1βr+1+...+ktβt+kt+1γr+1+...+kt+srγs=0

α = k 1 ⋅ α 1 + . . . + k r ⋅ α r \alpha=k_1\cdot\alpha_1+...+k_r\cdot\alpha_r α=k1α1+...+krαr

β = k r + 1 ⋅ β r + 1 + . . . + k t ⋅ β t \beta=k_{r+1}\cdot\beta_{r+1}+...+k_t\cdot\beta_t β=kr+1βr+1+...+ktβt

γ = k t + 1 ⋅ γ t + 1 + . . . + k t + s − r ⋅ γ t + s − r \gamma=k_{t+1}\cdot\gamma_{t+1}+...+k_{t+s-r}\cdot\gamma_{t+s-r} γ=kt+1γt+1+...+kt+srγt+sr

得到: α + β + γ = 0 ⇒ γ = − ( α + β ) \alpha+\beta+\gamma=0\Rightarrow\gamma=-(\alpha+\beta) α+β+γ=0γ=(α+β)

α ∈ U , β ∈ U , γ ∈ W ⇒ γ ∈ U ⇒ γ ∈ U ∩ W \alpha\in U, \beta\in U, \gamma\in W\Rightarrow\gamma\in U\Rightarrow \gamma\in U\cap W αU,βU,γWγUγUW

∵ α ∈ U ∩ W \because \alpha\in U\cap W αUW

∴ γ 可 由 α 线 性 表 示 , 即 : k t + 1 ⋅ γ t + 1 + . . . + k t + s − r ⋅ γ t + s − r = k 1 ⋅ α 1 + . . . + k r ⋅ α r \therefore \gamma可由\alpha线性表示,即:k_{t+1}\cdot\gamma_{t+1}+...+k_{t+s-r}\cdot\gamma_{t+s-r}=k_1\cdot\alpha_1+...+k_r\cdot\alpha_r γα线kt+1γt+1+...+kt+srγt+sr=k1α1+...+krαr

∴ k t + 1 ⋅ γ t + 1 + . . . + k t + s − r ⋅ γ t + s − r + k 1 ⋅ α 1 + . . . + k r ⋅ α r = 0 \therefore k_{t+1}\cdot\gamma_{t+1}+...+k_{t+s-r}\cdot\gamma_{t+s-r}+k_1\cdot\alpha_1+...+k_r\cdot\alpha_r=0 kt+1γt+1+...+kt+srγt+sr+k1α1+...+krαr=0

α 1 , α 2 , . . . , α r , γ r + 1 , γ r + 2 , . . . , γ t \alpha_1,\alpha_2,...,\alpha_r,\gamma_{r+1},\gamma_{r+2},...,\gamma_{t} α1,α2,...,αr,γr+1,γr+2,...,γt线性无关

∴ k 1 = k 2 = . . . = k r = k r + 1 = k r + 2 = . . . = k t = 0 \therefore k_1=k_2=...=k_r=k_{r+1}=k_{r+2}=...=k_{t}=0 k1=k2=...=kr=kr+1=kr+2=...=kt=0

同理得: k 1 = k 2 = . . . = k r = k r + 1 = k r + 2 = . . . = k t = 0 k_1=k_2=...=k_r=k_{r+1}=k_{r+2}=...=k_{t}=0 k1=k2=...=kr=kr+1=kr+2=...=kt=0

∴ k 1 = k 2 = . . . = k r = k r + 1 = k r + 2 = . . . = k t = k r + 1 = k r + 2 = . . . = k t = 0 \therefore k_1=k_2=...=k_r=k_{r+1}=k_{r+2}=...=k_{t}=k_{r+1}=k_{r+2}=...=k_{t}=0 k1=k2=...=kr=kr+1=kr+2=...=kt=kr+1=kr+2=...=kt=0

∴ α 1 , α 2 , . . . , α r , β r + 1 , β r + 2 , . . . , β t , γ t + 1 , γ t + 2 , . . . , γ t + s − r \therefore\alpha_1,\alpha_2,...,\alpha_r,\beta_{r+1},\beta_{r+2},...,\beta_{t},\gamma_{t+1},\gamma_{t+2},...,\gamma_{t+s-r} α1,α2,...,αr,βr+1,βr+2,...,βt,γt+1,γt+2,...,γt+sr线性无关

∴ α 1 , α 2 , . . . , α r , β r + 1 , β r + 2 , . . . , β t , γ t + 1 , γ t + 2 , . . . , γ t + s − r 是 U + W 的 一 组 基 \therefore \alpha_1,\alpha_2,...,\alpha_r,\beta_{r+1},\beta_{r+2},...,\beta_{t},\gamma_{t+1},\gamma_{t+2},...,\gamma_{t+s-r}是U+W的一组基 α1,α2,...,αr,βr+1,βr+2,...,βt,γt+1,γt+2,...,γt+srU+W

例1: U = { 对 称 阵 } , W = { 反 对 称 阵 } ⇒ d i m ( U ) = 1 2 n ( n + 1 ) , d i m ( W ) = 1 2 n ( n − 1 ) , U ∩ W = 0 U=\{对称阵\},W=\{反对称阵\}\Rightarrow dim(U)=\frac{1}{2}n(n+1),dim(W)=\frac{1}{2}n(n-1),U\cap W=0 U={},W={}dim(U)=21n(n+1),dim(W)=21n(n1),UW=0
⇒ R n × n = W ⊕ U , 且 d i m ( R n × n ) = d i m ( U ) + d i m ( W ) − d i m ( U ∩ W ) = n 2 \Rightarrow R^{n\times n}=W\oplus U,且dim(R^{n\times n})=dim(U)+dim(W)-dim(U\cap W)=n^2 Rn×n=WU,dim(Rn×n)=dim(U)+dim(W)dim(UW)=n2

例2: U = { 对 称 阵 } , W = { 上 三 角 阵 } ⇒ d i m ( U ) = 1 2 n ( n + 1 ) , d i m ( W ) = 1 2 n ( n + 1 ) , V = U ∩ W = 对 角 阵 , d i m ( V ) = n U=\{对称阵\},W=\{上三角阵\}\Rightarrow dim(U)=\frac{1}{2}n(n+1),dim(W)=\frac{1}{2}n(n+1),V=U\cap W={对角阵},dim(V)=n U={},W={}dim(U)=21n(n+1),dim(W)=21n(n+1),V=UW=dim(V)=n

⇒ d i m ( R n × n ) = d i m ( U ) + d i m ( W ) − d i m ( U ∩ W ) = 1 2 n ( n + 1 ) + 1 2 n ( n + 1 ) − n = n 2 \Rightarrow dim(R^{n\times n})=dim(U)+dim(W)-dim(U\cap W)=\frac{1}{2}n(n+1)+\frac{1}{2}n(n+1)-n=n^2 dim(Rn×n)=dim(U)+dim(W)dim(UW)=21n(n+1)+21n(n+1)n=n2

⋆ ⋆ ⋆ \star\star\star 例3: V = P 4 [ R ] , U = { f ( x ) ∈ V ∣ f ( 2 ) = f ( 3 ) } V=P_4[R], U=\{f(x)\in V|f(2)=f(3) \} V=P4[R],U={f(x)Vf(2)=f(3)}, (1)验证子空间;(2)求U维数;(3)给出U的一组基;(4)添加若干元素使得U扩充到V

解:验证子空间:略
V = k 0 + k 1 ⋅ x + k 2 ⋅ x 2 + k 3 ⋅ x 3 + k 4 ⋅ x 4 V=k_0+k_1\cdot x+k_2\cdot x^2+k_3\cdot x^3+k_4\cdot x^4 V=k0+k1x+k2x2+k3x3+k4x4

d i m ( V ) = 5 dim(V)=5 dim(V)=5

f ( 2 ) = f ( 3 ) ⇒ k 0 + 2 k 1 + 4 k 2 + 8 k 3 + 16 k 4 = k 0 + 3 k 1 + 9 k 2 + 27 k 3 + 81 k 4 ⇒ k 1 = − 5 k 2 − 19 k 3 − 65 k 4 f(2)=f(3)\Rightarrow k_0+2k_1+4k_2+8k_3+16k_4=k_0+3k_1+9k_2+27k_3+81k_4\Rightarrow k_1=-5k_2-19k_3-65k_4 f(2)=f(3)k0+2k1+4k2+8k3+16k4=k0+3k1+9k2+27k3+81k4k1=5k219k365k4

⇒ U = k 0 + ( − 5 k 2 − 19 k 3 − 65 k 4 ) ⋅ x + k 2 ⋅ x 2 + k 3 ⋅ x 3 + k 4 ⋅ x 4 \Rightarrow U=k_0+(-5k_2-19k_3-65k_4)\cdot x+k_2\cdot x^2+k3\cdot x^3+k_4\cdot x^4 U=k0+(5k219k365k4)x+k2x2+k3x3+k4x4

⇒ U = k 0 + k 2 ⋅ ( x 2 − 5 x ) + k 3 ⋅ ( x 3 − 19 x ) + k 4 ⋅ ( x 4 − 65 x ) \Rightarrow U=k_0+k_2\cdot(x^2-5x)+k_3\cdot(x^3-19x)+k_4\cdot(x^4-65x) U=k0+k2(x25x)+k3(x319x)+k4(x465x)

∴ d i m ( U ) = 4 \therefore dim(U)=4 dim(U)=4

U 的 一 组 基 为 : 1 , x 2 − 5 x , x 3 − 19 x , x 4 − 65 x U的一组基为:1,x^2-5x,x^3-19x,x^4-65x U:1,x25x,x319x,x465x

可添加元素 x x x构成一组基张成 V V V空间

其实在得到维数是4后可以自己编造满足条件的基向量,只需满足互不相关且 f ( 2 ) = f ( 3 ) f(2)=f(3) f(2)=f(3)即可

如: 1 , ( x − 2 ) ( x − 3 ) , x ( x − 2 ) ( x − 3 ) , x 2 ( x − 2 ) ( x − 3 ) 1,(x-2)(x-3),x(x-2)(x-3),x^2(x-2)(x-3) 1,(x2)(x3),x(x2)(x3),x2(x2)(x3)

添加的向量未必只有 x x x之类的一次项,比如也可以是 x 2 x^2 x2,依然与其他向量线性无关。

6 坐标

V V V是线性空间, α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn V V V的一组基,若存在 β ∈ V , β = x 1 α 1 + x 2 α 2 + . . . + x n α n \beta\in V,\beta=x_1\alpha_1+x_2\alpha_2+...+x_n\alpha_n βV,β=x1α1+x2α2+...+xnαn,其中令 X = ( x 1 , x 2 , . . . , x n ) X=(x_1,x_2,...,x_n) X=(x1,x2,...,xn),则称 X X X β \beta β在基 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn下的坐标

α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn V V V的一组基, β 1 , β 2 , . . . , β n \beta_1,\beta_2,...,\beta_n β1,β2,...,βn V V V的另一组基,设坐标点 α \alpha α在第一组基的坐标为 X X X,在第二组基的坐标为 Y Y Y
f ( x ) = { α = ( α 1 , α 2 , . . . , α n ) X α = ( β 1 , β 2 , . . . , β n ) Y f(x)=\begin{cases} \alpha = (\alpha_1, \alpha_2,..., \alpha_n)X \\ \alpha = (\beta_1, \beta_2,...,\beta_n)Y \end{cases} f(x)={α=(α1,α2,...,αn)Xα=(β1,β2,...,βn)Y
( β 1 , β 2 , . . . , β n ) = ( α 1 , α 2 , . . . , α n ) ⋅ P (\beta_1,\beta_2,...,\beta_n)=(\alpha_1,\alpha_2,...,\alpha_n)\cdot P (β1,β2,...,βn)=(α1,α2,...,αn)P, P P P n × n n\times n n×n的矩阵,称为过渡矩阵

则有 X = P Y X=PY X=PY,称为坐标变换公式

7 矩阵空间 A m × n A_{m\times n} Am×n的四个子空间

空间类型符号含义解的大空间求解方法
零空间 N ( A ) N(A) N(A) A ⋅ X = 0 A\cdot X=0 AX=0的所有解构成的空间大空间为 R n R^n Rn行变换化至标准阶梯型,参见解齐次线性方程组
左零空间 N ( A T ) N(A^T) N(AT) A T ⋅ X = 0 A^T\cdot X=0 ATX=0的所有解构成的空间大空间为 R m R^m Rm行变换化至标准阶梯型,记录变换矩阵,阶梯矩阵0行对应的变换矩阵行即为解
列空间 C ( A ) C(A) C(A) S p a n ( 列 向 量 ) Span(列向量) Span()大空间为 R m R^m Rm行变换化至标准阶梯型,(根据行变换不改变列向量的相关性)取阶梯1对应的原始矩阵列即为解
行空间 R ( A ) R(A) R(A) S p a n ( 行 向 量 ) Span(行向量) Span()大空间为 R n R^n Rn行变换化至标准阶梯型,不为0的行向量即为解

8 矩阵空间 A m × n A_{m\times n} Am×n的满秩分解

8.1 定义

  对于矩阵 A m × n , R ( A ) = r A_{m\times n}, R(A)=r Am×n,R(A)=r , 存在矩阵 P m × r , Q r × n P_{m\times r},Q_{r\times n} Pm×rQr×n使得 A m × n = P m × r ⋅ Q r × n A_{m\times n}=P_{m\times r}\cdot Q_{r\times n} Am×n=Pm×rQr×n,称该过程为满秩分解。

问题:对任意 A m × n A_{m\times n} Am×n,满秩分解是否存在,若存在,是否唯一

证明存在:

对于任意矩阵 A m × n A_{m\times n} Am×n存在变换矩阵 P m × m P_{m\times m} Pm×m与列变换矩阵 Q n × n Q_{n\times n} Qn×n 使得 P m × m ⋅ A m × n ⋅ Q n × n = [ E r 0 0 0 ] P_{m\times m}\cdot A_{m\times n}\cdot Q_{n\times n}=\begin{bmatrix} E_r& 0\\0& 0\end{bmatrix} Pm×mAm×nQn×n=[Er000]

A m × n = P − 1 ⋅ [ E r 0 0 0 ] ⋅ Q − 1 = P − 1 ⋅ [ E r 0 ] ⋅ [ E r 0 ] ⋅ Q − 1 A_{m\times n}=P^{-1}\cdot \begin{bmatrix} E_r&0\\0&0\end{bmatrix}\cdot Q^{-1}=P^{-1}\cdot \begin{bmatrix}E_r\\0\end{bmatrix}\cdot\begin{bmatrix}E_r&0\end{bmatrix}\cdot Q^{-1} Am×n=P1[Er000]Q1=P1[Er0][Er0]Q1

P m × r = P − 1 ⋅ [ E r 0 ] P_{m\times r}=P^{-1}\cdot \begin{bmatrix}E_r&0\end{bmatrix} Pm×r=P1[Er0]

Q r × n = [ E r 0 ] ⋅ Q − 1 Q_{r\times n}=\begin{bmatrix}E_r\\0\end{bmatrix}\cdot Q^{-1} Qr×n=[Er0]Q1

故存在。

证明不唯一:

对于任意矩阵 A m × n A_{m\times n} Am×n及任意可逆方阵 B r × r B_{r\times r} Br×r和逆矩阵 B − 1 B^{-1} B1

有: A m × n = P m × r ⋅ Q r × n = P m × r ⋅ B ⋅ B − 1 ⋅ Q r × n A_{m\times n}=P_{m\times r}\cdot Q_{r\times n} = P_{m\times r}\cdot B\cdot B^{-1}\cdot Q_{r\times n} Am×n=Pm×rQr×n=Pm×rBB1Qr×n

又可逆矩阵B不唯一,所以满秩分解不唯一。

8.2 满秩分解的其他求解方法

  • 求满秩分解方法二:

A m × n A_{m\times n} Am×n按列分块,得 A m × n = [ α 1 , α 2 , . . . , α r , α r + 1 , . . . , α n ] A_{m\times n}=[\alpha_1, \alpha_2,...,\alpha_r,\alpha_{r+1},...,\alpha_n] Am×n=[α1,α2,...,αr,αr+1,...,αn]

A m × n A_{m\times n} Am×n前r个线性无关组为 P = [ α 1 , α 2 , . . . , α r ] P=[\alpha_1,\alpha_2,...,\alpha_r] P=[α1,α2,...,αr]

Q Q Q为用 P P P表示 A m × n A_{m\times n} Am×n中每一列的坐标,即 [ ( 1 0 0 . . . 0 ) , ( 0 1 0 . . . 0 ) , . . . , ( 0 0 0 . . . 1 ) , y r + 1 , . . . , y n ] [\begin{pmatrix}1\\0\\0\\...\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\\...\\0\end{pmatrix},...,\begin{pmatrix}0\\0\\0\\...\\1\end{pmatrix}, y_{r+1},...,y_n] [100...0,010...0,...,000...1,yr+1,...,yn]

具体求解方法是行变换,化为标准型 [ H A − − − 0 ] \begin{bmatrix}H_A\\---\\0\end{bmatrix} HA0,其中 H A H_A HA就是 Q Q Q

  • 求满秩分解方法三:

与方法二有异曲同工之妙

A m × n A_{m\times n} Am×n采用行变换,化为标准型 [ H A − − − 0 ] \begin{bmatrix}H_A\\---\\0\end{bmatrix} HA0

Q r × n = H A Q_{r\times n}=H_A Qr×n=HA

P m × r P_{m\times r} Pm×r H A H_A HA中“1”列对应 A m × n A_{m\times n} Am×n中的列向量。

例: A m × n = [ α 1 , α 2 , α 3 , α 4 ] A_{m\times n}=[\alpha_1, \alpha_2,\alpha_3,\alpha_4] Am×n=[α1,α2,α3,α4],求包含 α 4 \alpha_4 α4的满秩分解。

​ 解:令 A ^ m × n = A m × n ⋅ Q 14 = P m × r ⋅ Q ^ r × n \hat A_{m\times n}=A_{m\times n}\cdot Q_{14}=P_{m\times r}\cdot \hat Q_{r\times n} A^m×n=Am×nQ14=Pm×rQ^r×n,其中 Q 14 Q_{14} Q14表示列变换矩阵,将1列与4列交换

​ 则: A m × n = P m × r ⋅ Q ^ r × n ⋅ Q 14 − 1 A_{m\times n}=P_{m\times r}\cdot \hat Q_{r\times n}\cdot Q^{-1}_{14} Am×n=Pm×rQ^r×nQ141

​ 令: Q r × n = Q ^ r × n ⋅ Q 14 − 1 Q_{r\times n}=\hat Q_{r\times n}\cdot Q^{-1}_{14} Qr×n=Q^r×nQ141

8.3 满秩分解的逆命题

逆命题:对于矩阵 A m × n A_{m\times n} Am×n,若存在矩阵 P m × r , Q r × n P_{m\times r},Q_{r\times n} Pm×rQr×n使得 A m × n = P m × r ⋅ Q r × n A_{m\times n}=P_{m\times r}\cdot Q_{r\times n} Am×n=Pm×rQr×n,则 r ( A m × n ) = r r(A_{m\times n})=r r(Am×n)=r

证明:由线性代数知识可知 r ( A ) + r ( B ) − s ≤ r ( A m × s ⋅ B s × n ) ≤ m i n { r ( A ) , r ( B ) } r(A)+r(B)-s \le r(A_{m\times s}\cdot B_{s\times n})\le min\{r(A),r(B)\} r(A)+r(B)sr(Am×sBs×n)min{r(A),r(B)}

​ 易知 r ( P m × r ) = r ( Q r × n ) = r ⇒ r ( P ) + r ( Q ) − r = r r(P_{m\times r})=r(Q_{r\times n})=r\Rightarrow r(P)+r(Q)-r=r r(Pm×r)=r(Qr×n)=rr(P)+r(Q)r=r

m i n { P m × r ⋅ Q r × n } = r min\{P_{m\times r}\cdot Q_{r\times n}\}=r min{Pm×rQr×n}=r

⇒ r ( P m × r ⋅ Q r × n ) = r \Rightarrow r(P_{m\times r}\cdot Q_{r\times n})=r r(Pm×rQr×n)=r, 证毕。

⋆ ⋆ \star\star 例1:证明 r ( A m × s ⋅ B s × n ) ≤ m i n { r ( A ) , r ( B ) } r(A_{m\times s}\cdot B_{s\times n})\le min\{r(A),r(B)\} r(Am×sBs×n)min{r(A),r(B)}:

证明方法:

  • 行列变换不改变秩
  • 将一般矩阵化为特殊矩阵(0越多越好)

​ 设 P A P_A PA A m × s A_{m\times s} Am×s的行变换矩阵; Q B Q_B QB B s × n B_{s\times n} Bs×n的列变换矩阵

​ 则 P A ⋅ A m × s = [ A − − − 0 ] P_A\cdot A_{m\times s}=\begin{bmatrix}A\\---\\0\end{bmatrix} PAAm×s=A0

B s × n ⋅ Q B = [ B ∣ 0 ] B_{s\times n}\cdot Q_B=\begin{bmatrix}B &| &0\end{bmatrix} Bs×nQB=[B0]

⇒ r ( A m × s ⋅ B s × n ) = r ( P A ⋅ A m × s ⋅ B s × n ⋅ Q B ) = r ( [ A ⋅ B 0 0 0 ] ) \Rightarrow r(A_{m\times s}\cdot B_{s\times n})=r(P_A\cdot A_{m\times s}\cdot B_{s\times n}\cdot Q_B)=r(\begin{bmatrix}A\cdot B & 0\\0&0\end{bmatrix}) r(Am×sBs×n)=r(PAAm×sBs×nQB)=r([AB000])

⇒ r ( A m × s ⋅ B s × n ) ≤ m i n { r ( A ) , r ( B ) } \Rightarrow r(A_{m\times s}\cdot B_{s\times n})\le min\{r(A),r(B)\} r(Am×sBs×n)min{r(A),r(B)}

⋆ ⋆ ⋆ \star\star\star 例2:证明 r ( A ) + r ( B ) − s ≤ r ( A m × s ⋅ B s × n ) r(A)+r(B)-s \le r(A_{m\times s}\cdot B_{s\times n}) r(A)+r(B)sr(Am×sBs×n)

P m × m P_{m\times m} Pm×m A m × s A_{m\times s} Am×s的行变换矩阵; Q s × s Q_{s\times s} Qs×s A m × s A_{m\times s} Am×s的列变换矩阵

则有: P m × m ⋅ A m × s ⋅ Q s × s = [ E r ( A ) 0 0 0 ] P_{m\times m}\cdot A_{m\times s}\cdot Q_{s\times s}=\begin{bmatrix}E_{r(A)}&0\\0&0\end{bmatrix} Pm×mAm×sQs×s=[Er(A)000]

r ( A m × s ⋅ B s × n ) = r ( P m × m ⋅ A m × s ⋅ Q s × s ⋅ Q s × s − 1 ⋅ B s × n ) = r ( [ E r ( A ) 0 0 0 ] ⋅ Q s × s − 1 ⋅ B s × n ) r(A_{m\times s}\cdot B_{s\times n})=r(P_{m\times m}\cdot A_{m\times s}\cdot Q_{s\times s}\cdot Q_{s\times s}^{-1}\cdot B_{s\times n})=r(\begin{bmatrix}E_{r(A)}&0\\0&0\end{bmatrix}\cdot Q_{s\times s}^{-1}\cdot B_{s\times n}) r(Am×sBs×n)=r(Pm×mAm×sQs×sQs×s1Bs×n)=r([Er(A)000]Qs×s1Bs×n)

Q s × s − 1 ⋅ B s × n = [ B 1 B 2 B 3 B 4 ] Q_{s\times s}^{-1}\cdot B_{s\times n}=\begin{bmatrix}B_1&B_2\\B_3&B_4\end{bmatrix} Qs×s1Bs×n=[B1B3B2B4],其中 B 1 , B 2 B_1,B2 B1,B2 r ( A ) r(A) r(A)

⇒ r ( A m × s ⋅ B s × n ) = r ( [ B 1 B 2 0 0 ] ) \Rightarrow r(A_{m\times s}\cdot B_{s\times n})=r(\begin{bmatrix}B_1&B_2\\0&0\end{bmatrix}) r(Am×sBs×n)=r([B10B20])

∴ \therefore 只要知道 [ B 1 B 2 0 0 ] \begin{bmatrix}B_1&B_2\\0&0\end{bmatrix} [B10B20]中有几个线性无关的行即可,又 [ B 1 B 2 B 3 B 4 ] \begin{bmatrix}B_1&B_2\\B_3&B_4\end{bmatrix} [B1B3B2B4]中有 r ( B ) r(B) r(B)个线性无关的行,则 B 1 , B 2 B_1,B2 B1,B2至少有 r ( B ) − ( s − r ( A ) ) r(B)-(s-r(A)) r(B)(sr(A))行线性无关,即 r ( [ B 1 B 2 0 0 ] ) ≥ r ( B ) − ( s − r ( A ) ) r(\begin{bmatrix}B_1&B_2\\0&0\end{bmatrix})\ge r(B)-(s-r(A)) r([B10B20])r(B)(sr(A))

⇒ r ( A ) + r ( B ) − s ≤ r ( A m × s ⋅ B s × n ) \Rightarrow r(A)+r(B)-s \le r(A_{m\times s}\cdot B_{s\times n}) r(A)+r(B)sr(Am×sBs×n),证毕。

(注:理解为:撑死B3,B4组成的行都与B1,B2线性无关)

⋆ ⋆ \star\star 例3:对于一 A m × n = [ ∣ ∣ ∣ B ∣ ∣ ∣ ] A_{m\times n}=\begin{bmatrix}& | && |& \\\hline & | &B& | &\\\hline & | &&| &\end{bmatrix} Am×n=B P P P Q Q Q列子阵 B B B,证 r ( B ) ≥ r ( A ) + P + Q − m − n r(B)\ge r(A)+P+Q-m-n r(B)r(A)+P+Qmn

​ 证明:令 A m × n = [ C ] A_{m\times n}=\begin{bmatrix} \\\hline C\\ \hline \\ \end{bmatrix} Am×n=C,其中子阵 C C C P P P n n n列; C = [ ∣ B ∣ ] C=\begin{bmatrix} &| B | &\end{bmatrix} C=[B]

​ 则 r ( C ) ≥ r ( A ) − ( m − P ) r(C)\ge r(A)-(m-P) r(C)r(A)(mP)

r ( B ) ≥ r ( C ) − ( n − Q ) r(B)\ge r(C)-(n-Q) r(B)r(C)(nQ)

​ 两个不等式相加即可得到 r ( B ) ≥ r ( A ) + P + Q − m − n r(B)\ge r(A)+P+Q-m-n r(B)r(A)+P+Qmn,证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值