《矩阵理论》大萌课程笔记 - 矩阵分解

《矩阵理论》大萌课程笔记 - 矩阵分解


总目录

章节名称与链接
线性空间与线性变换线性空间与子空间
有限维线性空间、基、维数
线性变换
内积空间
特征值与特征向量
特殊矩阵
矩阵分解
矩阵函数

声明

  本专栏博客用于记录上海交通大学研究生课程《矩阵理论》笔记,课程任教老师为邓大萌老师。所有内容均为博主个人的课堂笔记,包括课堂例题与证明。如有不妥、错误之处欢迎大家指正。



1 正交三角分解

定义: A m × n = U m × n ⋅ R n × n A_{m\times n}=U_{m\times n}\cdot R_{n\times n} Am×n=Um×nRn×n,其中 U U U的列向量是标准正交向量(单位化,正交化), R R R主对角元素大于0的上三角阵

条件: A A A是列满秩矩阵

分解方法:斯密特正交化法,按照A的列向量标准正交化,得到的标准正交向量构成 U U U,系数为 R R R

性质:正交三角分解的结果唯一

2 谱分解

定义:已知矩阵 A A A可以相似对角化, P − 1 A P = [ λ 1 λ 2 . . . λ n ] ⇒ A = P [ λ 1 λ 2 . . . λ n ] P − 1 P^{-1}AP=\begin{bmatrix}\lambda_1&&&\\&\lambda_2&&\\&&...&\\&&&\lambda_n\end{bmatrix}\Rightarrow A=P\begin{bmatrix}\lambda_1&&&\\&\lambda_2&&\\&&...&\\&&&\lambda_n\end{bmatrix}P^{-1} P1AP=λ1λ2...λnA=Pλ1λ2...λnP1

​ 设 P = ( α 1 , α 2 , . . . , α n ) , P − 1 = ( β 1 T , β 2 T , . . . , β n T ) T P=(\alpha_1,\alpha_2,...,\alpha_n),P^{-1}=(\beta_1^T,\beta_2^T,...,\beta_n^T)^T P=(α1,α2,...,αn),P1=(β1T,β2T,...,βnT)T

A = λ 1 α 1 β 1 T + λ 2 α 2 β 2 T + . . . + λ n α n β n T = Σ i = 1 n λ i G i , G i = α i ⋅ β i T A=\lambda_1\alpha_1\beta_1^T+\lambda_2\alpha_2\beta_2^T+...+\lambda_n\alpha_n\beta_n^T=\Sigma_{i=1}^n\lambda_iG_i,G_i=\alpha_i\cdot\beta_i^T A=λ1α1β1T+λ2α2β2T+...+λnαnβnT=Σi=1nλiGi,Gi=αiβiT

条件: A A A是方阵且可以对角化

分解方法:先求解特征值,再求特征向量得到 P P P,最后按行列写成定义形式。

性质:

  • Σ i = 1 k G i = E \Sigma_{i=1}^kG_i=E Σi=1kGi=E

证明: Σ i = 1 k G i = α 1 β 1 T + α 2 β 2 T + . . . + α n β n T = ( α 1 , α 2 , . . . , α n ) ⋅ ( β 1 T , β 2 T , . . . , β n T ) T = P ⋅ P − 1 = E \Sigma_{i=1}^kG_i=\alpha_1\beta_1^T+\alpha_2\beta_2^T+...+\alpha_n\beta_n^T=(\alpha_1,\alpha_2,...,\alpha_n)\cdot (\beta_1^T,\beta_2^T,...,\beta_n^T)^T=P\cdot P^{-1}=E Σi=1kGi=α1β1T+α2β2T+...+αnβnT=(α1,α2,...,αn)(β1T,β2T,...,βnT)T=PP1=E

证毕。

  • G i ⋅ G i = G i , G i ⋅ G j = 0 G_i\cdot G_i=G_i,G_i\cdot G_j=0 GiGi=Gi,GiGj=0

证明: P − 1 ⋅ P = ( β 1 T , β 2 T , . . . , β n T ) T ⋅ ( α 1 , α 2 , . . . , α n ) = E P^{-1}\cdot P=(\beta_1^T,\beta_2^T,...,\beta_n^T)^T\cdot(\alpha_1,\alpha_2,...,\alpha_n)=E P1P=(β1T,β2T,...,βnT)T(α1,α2,...,αn)=E

⇒ β i T ⋅ α i = 1 , β i T ⋅ α j = 0 \Rightarrow \beta_i^T\cdot\alpha_i=1,\beta_i^T\cdot\alpha_j=0 βiTαi=1,βiTαj=0

⇒ ( α i β i ) 2 = α i β i , ( α i β j ) 2 = 0 \Rightarrow (\alpha_i\beta_i)^2=\alpha_i\beta_i,(\alpha_i\beta_j)^2=0 (αiβi)2=αiβi,(αiβj)2=0

⇒ G i 2 = ( α k β k + α k + 1 β k + 1 + . . . + α k + n i β k + n i ) 2 = G i , G i ⋅ G j = 0 \Rightarrow G_i^2=(\alpha_{k}\beta_{k}+\alpha_{k+1}\beta_{k+1}+...+\alpha_{k+n_i}\beta_{k+n_i})^2=G_i,G_i\cdot G_j=0 Gi2=(αkβk+αk+1βk+1+...+αk+niβk+ni)2=Gi,GiGj=0,证毕。

  • r ( G i ) = n i r(G_i)=n_i r(Gi)=ni n i n_i ni是重数

证明:已知 G i = α k β k + α k + 1 β k + 1 + . . . + α k + n i β k + n i ⇒ G i G_i=\alpha_{k}\beta_{k}+\alpha_{k+1}\beta_{k+1}+...+\alpha_{k+n_i}\beta_{k+n_i}\Rightarrow G_i Gi=αkβk+αk+1βk+1+...+αk+niβk+niGi每一列向量由 α k , α k + 1 , . . . , α k + n i \alpha_k,\alpha_{k+1},...,\alpha_{k+n_i} αk,αk+1,...,αk+ni线性组合得到

​ 已知线性无关组 ≤ \le 张成组,因此 r ( G i ) ≤ n i r(G_i)\le n_i r(Gi)ni

Σ i = 1 k G i = E ⇒ Σ i = 1 k r ( G i ) ≥ r ( Σ i = 1 k G i ) = r ( E ) = n = Σ i = 1 k n i \Sigma_{i=1}^k G_i=E\Rightarrow \Sigma_{i=1}^k r(G_i)\ge r(\Sigma_{i=1}^k G_i)=r(E)=n=\Sigma_{i=1}^kn_i Σi=1kGi=EΣi=1kr(Gi)r(Σi=1kGi)=r(E)=n=Σi=1kni

⇒ r ( G i ) = n i \Rightarrow r(G_i)=n_i r(Gi)=ni

  • 谱分解的结果唯一

证明:假设谱分解结果不唯一,则存在 A = λ 1 G 1 + λ 2 G 2 + . . . + λ k G k = λ 1 P 1 + λ 2 P 2 + . . . + λ k P k A=\lambda_1G_1+\lambda_2G_2+...+\lambda_kG_k=\lambda_1P_1+\lambda_2P_2+...+\lambda_k P_k A=λ1G1+λ2G2+...+λkGk=λ1P1+λ2P2+...+λkPk

等式两边左乘 G i , 1 ≤ i ≤ k ⇒ λ i G i = G i ( λ 1 P 1 + λ 2 P 2 + . . . + λ k P k ) G_i,1\le i\le k\Rightarrow \lambda_iG_i=G_i(\lambda_1P_1+\lambda_2P_2+...+\lambda_k P_k) Gi,1ikλiGi=Gi(λ1P1+λ2P2+...+λkPk)

等式两边右乘 P j , 1 ≤ j ≤ k , j ≠ i ⇒ λ i G i P j = λ j G i P j P_j,1\le j\le k,j\not=i\Rightarrow \lambda_i G_iP_j=\lambda_jG_iP_j Pj,1jk,j=iλiGiPj=λjGiPj

∵ λ i ≠ λ j ⇒ G i P j = 0 , i ≠ j \because \lambda_i\not=\lambda_j\Rightarrow G_iP_j=0,i\not=j λi=λjGiPj=0,i=j

⇒ λ i G i = G i ( λ 1 P 1 + λ 2 P 2 + . . . + λ k P k ) = λ i G i P i \Rightarrow \lambda_iG_i=G_i(\lambda_1P_1+\lambda_2P_2+...+\lambda_k P_k)=\lambda_iG_iP_i λiGi=Gi(λ1P1+λ2P2+...+λkPk)=λiGiPi

λ i P i = ( λ 1 G 1 + λ 2 G 2 + . . . + λ k G k ) P i = λ i G i P i \lambda_i P_i=(\lambda_1G_1+\lambda_2G_2+...+\lambda_kG_k)P_i=\lambda_iG_iP_i λiPi=(λ1G1+λ2G2+...+λkGk)Pi=λiGiPi

⇒ G i = P i ⇒ \Rightarrow G_i=P_i\Rightarrow Gi=Pi谱分解唯一

  • 正规矩阵一定有谱分解

例:“度量矩阵一定有谱分解”是对是错?

度量矩阵是Hermite阵/正定阵 ⇒ \Rightarrow 度量矩阵是正规矩阵 ⇒ \Rightarrow 正规矩阵一定有有谱分解

所以,度量矩阵一定有谱分解,对

3 三角分解

定义:将方阵 A A A分解为单位下三角阵(对角线元素为1)和上三角阵 A = L R A=LR A=LR

条件: n × n n\times n n×n方阵, r ( A ) = r r(A)=r r(A)=r,前 r r r阶顺序主子式不等于0

分解方法:高斯消元法(行变换化标准型)/左乘行变换矩阵

例: A = [ 1 2 4 2 3 5 3 5 9 ] A=\begin{bmatrix}1&2&4\\2&3&5\\3&5&9\end{bmatrix} A=123235459,求 A A A的三角分解。

[ 1 − 2 1 − 3 1 ] A = [ 1 2 4 0 − 1 − 3 0 − 1 − 3 ] \begin{bmatrix}1&&\\-2&1&\\-3&&1\end{bmatrix}A=\begin{bmatrix}1&2&4\\0&-1&-3\\0&-1&-3\end{bmatrix} 12311A=100211433

⇒ [ 1 1 − 1 1 ] [ 1 − 2 1 − 3 1 ] A = [ 1 − 2 1 − 1 − 1 1 ] A = [ 1 2 4 0 − 1 − 3 0 0 0 ] \Rightarrow \begin{bmatrix}1&&\\&1&\\&-1&1\end{bmatrix}\begin{bmatrix}1&&\\-2&1&\\-3&&1\end{bmatrix}A=\begin{bmatrix}1&&\\-2&1&\\-1&-1&1\end{bmatrix}A=\begin{bmatrix}1&2&4\\0&-1&-3\\0&0&0\end{bmatrix} 111112311A=121111A=100210430

⇒ A = [ 1 − 2 1 − 1 − 1 1 ] − 1 [ 1 2 4 0 − 1 − 3 0 0 0 ] = [ 1 2 1 3 1 1 ] [ 1 2 4 0 − 1 − 3 0 0 0 ] \Rightarrow A=\begin{bmatrix}1&&\\-2&1&\\-1&-1&1\end{bmatrix}^{-1}\begin{bmatrix}1&2&4\\0&-1&-3\\0&0&0\end{bmatrix}=\begin{bmatrix}1&&\\2&1&\\3&1&1\end{bmatrix}\begin{bmatrix}1&2&4\\0&-1&-3\\0&0&0\end{bmatrix} A=1211111100210430=123111100210430

性质:三角分解唯一

⋆ ⋆ ⋆ \star\star\star 特殊的类三角分解:Cholesky分解

定义:若 A A A是正定矩阵,则存在上三角阵 R R R使得 A = R ∗ R A=R^*R A=RR,该分解成为Cholesky分解(注意: A A A正定隐含的条件是 A A A为Hermite阵)

证明:已知 A A A是正定矩阵 ⇒ A \Rightarrow A A是Hermite阵 ⇒ A \Rightarrow A A可以酉对角化

则存在酉矩阵 U U U使得 U ∗ A U = [ λ 1 λ 2 . . . λ n ] ⇒ A = U [ λ 1 λ 2 . . . λ n ] U ∗ U^*AU=\begin{bmatrix}\lambda_1&&&\\&\lambda_2&&\\&&...&\\&&&\lambda_n\end{bmatrix}\Rightarrow A=U\begin{bmatrix}\lambda_1&&&\\&\lambda_2&&\\&&...&\\&&&\lambda_n\end{bmatrix}U^* UAU=λ1λ2...λnA=Uλ1λ2...λnU

又因为 A A A是正定矩阵 ⇒ λ i > 0 , 1 ≤ i ≤ n \Rightarrow \lambda_i>0,1\le i\le n λi>0,1in

∴ A = U [ λ 1 λ 2 . . . λ n ] [ λ 1 λ 2 . . . λ n ] U ∗ \therefore A=U\begin{bmatrix}\sqrt\lambda_1&&&\\&\sqrt\lambda_2&&\\&&...&\\&&&\sqrt\lambda_n\end{bmatrix}\begin{bmatrix}\sqrt\lambda_1&&&\\&\sqrt\lambda_2&&\\&&...&\\&&&\sqrt\lambda_n\end{bmatrix}U^* A=Uλ 1λ 2...λ nλ 1λ 2...λ nU

B = [ λ 1 λ 2 . . . λ n ] U ∗ ⇒ B ∗ = U [ λ 1 λ 2 . . . λ n ] B=\begin{bmatrix}\sqrt\lambda_1&&&\\&\sqrt\lambda_2&&\\&&...&\\&&&\sqrt\lambda_n\end{bmatrix}U^*\Rightarrow B^*=U\begin{bmatrix}\sqrt\lambda_1&&&\\&\sqrt\lambda_2&&\\&&...&\\&&&\sqrt\lambda_n\end{bmatrix} B=λ 1λ 2...λ nUB=Uλ 1λ 2...λ n

因为 B B B是列满秩矩阵,因此存在正交三角分解,即 B = Q R , B ∗ = R ∗ Q ∗ , Q ∗ Q = E B=QR,B^*=R^*Q^*,Q^*Q=E B=QR,B=RQ,QQ=E

⇒ A = B ∗ B = R ∗ Q ∗ Q R = R ∗ R \Rightarrow A=B^*B=R^*Q^*QR=R^*R A=BB=RQQR=RR,证毕

求解方法:行、列变换 ⇒ \Rightarrow 求逆 ⇒ \Rightarrow 拆分 ⇒ \Rightarrow 合并

例: A = [ 1 2 2 6 ] A=\begin{bmatrix}1&2\\2&6\end{bmatrix} A=[1226],求 A A A的Cholesky分解

A A A进行行列变换得: [ 1 − 2 1 ] A [ 1 − 2 1 ] = [ 1 2 ] = [ 1 2 ] [ 1 2 ] \begin{bmatrix}1&\\-2&1\end{bmatrix}A\begin{bmatrix}1&-2\\&1\end{bmatrix}=\begin{bmatrix}1&\\&2\end{bmatrix}=\begin{bmatrix}1&\\&\sqrt2\end{bmatrix}\begin{bmatrix}1&\\&\sqrt2\end{bmatrix} [121]A[121]=[12]=[12 ][12 ]

⇒ A = [ 1 − 2 1 ] − 1 [ 1 2 ] [ 1 2 ] [ 1 − 2 1 ] − 1 = [ 1 2 1 ] [ 1 2 ] [ 1 2 ] [ 1 2 1 ] = [ 1 2 2 ] [ 1 2 2 ] \Rightarrow A=\begin{bmatrix}1&\\-2&1\end{bmatrix}^{-1}\begin{bmatrix}1&\\&\sqrt2\end{bmatrix}\begin{bmatrix}1&\\&\sqrt2\end{bmatrix}\begin{bmatrix}1&-2\\&1\end{bmatrix}^{-1}=\begin{bmatrix}1&\\2&1\end{bmatrix}\begin{bmatrix}1&\\&\sqrt2\end{bmatrix}\begin{bmatrix}1&\\&\sqrt2\end{bmatrix}\begin{bmatrix}1&2\\&1\end{bmatrix}=\begin{bmatrix}1&\\2&\sqrt2\end{bmatrix}\begin{bmatrix}1&2\\&\sqrt2\end{bmatrix} A=[121]1[12 ][12 ][121]1=[121][12 ][12 ][121]=[122 ][122 ]

4 奇异值分解( ⋆ ⋆ ⋆ \star\star\star 必考大题15分)

定义:矩阵 A m × n A_{m\times n} Am×n可以分解为 A m × n = U m × m ⋅ D m × n ⋅ V n × n ∗ A_{m\times n}=U_{m\times m}\cdot D_{m\times n}\cdot V^*_{n\times n} Am×n=Um×mDm×nVn×n,其中 U , V ∗ U,V^* U,V是酉矩阵, r ( A ) = r r(A)=r r(A)=r D m × n = [ δ 1 δ 2 . . . δ r 0 . . . 0 ] , δ i > 0 , 0 ≤ i ≤ r , δ i D_{m\times n}=\begin{bmatrix}\delta_1\\&\delta_2\\&&...\\&&&\delta_r\\&&&&0\\&&&&&...\\&&&&&&0\end{bmatrix},\delta_i>0,0\le i\le r,\delta_i Dm×n=δ1δ2...δr0...0,δi>0,0ir,δi就是奇异值

A A ∗ = U m × m ⋅ [ δ 1 2 δ 2 2 . . . δ r 2 0 . . . 0 ] m × m ⋅ U m × m ∗ AA^*=U_{m\times m}\cdot \begin{bmatrix}\delta_1^2\\&\delta_2^2\\&&...\\&&&\delta_r^2\\&&&&0\\&&&&&...\\&&&&&&0\end{bmatrix}_{m\times m}\cdot U^*_{m\times m} AA=Um×mδ12δ22...δr20...0m×mUm×m

A ∗ A = V n × n ⋅ [ δ 1 2 δ 2 2 . . . δ r 2 0 . . . 0 ] n × n ⋅ V n × n ∗ A^*A=V_{n\times n}\cdot \begin{bmatrix}\delta_1^2\\&\delta_2^2\\&&...\\&&&\delta_r^2\\&&&&0\\&&&&&...\\&&&&&&0\end{bmatrix}_{n\times n}\cdot V^*_{n\times n} AA=Vn×nδ12δ22...δr20...0n×nVn×n

存在以下结论保证任意 A A A均有此分解:

  • r ( A ) = r ( A A ∗ ) = r ( A ∗ A ) r(A)=r(AA^*)=r(A^*A) r(A)=r(AA)=r(AA)

证明:
若证得 N ( A ) = N ( A ∗ A ) N(A)=N(A^*A) N(A)=N(AA),则可得到 n − r ( A ) = n − r ( A ∗ A ) ⇒ r ( A ) = r ( A ∗ A ) n-r(A)=n-r(A^*A)\Rightarrow r(A)=r(A^*A) nr(A)=nr(AA)r(A)=r(AA)

​ 设 ∀ α ∈ N ( A ) , A α = 0 ⇒ A ∗ A α = 0 , α ∈ N ( A ∗ A ) ⇒ N ( A ) ⊆ N ( A ∗ A ) \forall\alpha\in N(A),A\alpha=0\Rightarrow A^*A\alpha=0,\alpha\in N(A^*A)\Rightarrow N(A)\sube N(A^*A) αN(A),Aα=0AAα=0,αN(AA)N(A)N(AA)

​ 设 ∀ β ∈ N ( A ∗ A ) , A ∗ A β = 0 ⇒ β ∗ A ∗ A β = ( A β , A β ) = 0 ⇒ , A β = 0 ⇒ β ∈ N ( A ) ⇒ N ( A ∗ A ) ⊆ N ( A ) \forall \beta\in N(A^*A),A^*A\beta=0\Rightarrow \beta^*A^*A\beta=(A\beta,A\beta)=0\Rightarrow,A\beta=0\Rightarrow \beta\in N(A)\Rightarrow N(A^*A)\sube N(A) βN(AA),AAβ=0βAAβ=(Aβ,Aβ)=0,Aβ=0βN(A)N(AA)N(A)

⇒ N ( A ) = N ( A ∗ A ) ⇒ r ( A ) = r ( A ∗ A ) \Rightarrow N(A)=N(A^*A)\Rightarrow r(A)=r(A*A) N(A)=N(AA)r(A)=r(AA)

​ 同理可证 r ( A ) = r ( A A ∗ ) r(A)=r(AA^*) r(A)=r(AA)

⇒ r ( A ) = r ( A A ∗ ) = r ( A ∗ A ) \Rightarrow r(A)=r(AA^*)=r(A^*A) r(A)=r(AA)=r(AA)

  • A A ∗ AA^* AA A ∗ A A^*A AA非零特征值相同且对应重数也相同

证明:
( A A ∗ ) ∗ = A A ∗ , ( A ∗ A ) ∗ = A ∗ A ⇒ A A ∗ (AA^*)^*=AA^*,(A^*A)^*=A^*A\Rightarrow AA^* (AA)=AA,(AA)=AAAA A ∗ A A^*A AA都是Hermite矩阵 ⇒ A ∗ A , A A ∗ \Rightarrow A^*A,AA^* AA,AA可以酉对角化

​ 设 λ i \lambda_i λi A ∗ A A^*A AA的特征向量 , 1 ≤ i ≤ r , α i ,1\le i\le r,\alpha_i ,1ir,αi是对应的特征值,则 A ∗ A α i = λ i α i A^*A\alpha_i=\lambda_i\alpha_i AAαi=λiαi

⇒ A A ∗ A α i = λ i A α i ⇒ A α i \Rightarrow AA^*A\alpha_i=\lambda_iA\alpha_i\Rightarrow A\alpha_i AAAαi=λiAαiAαi A A ∗ AA^* AA的特征向量, λ i \lambda_i λi是对应的特征值

⇒ A A ∗ \Rightarrow AA^* AA A ∗ A A^*A AA的特征值相同

  • A A ∗ AA^* AA A ∗ A A^*A AA半正定

证明: x ∗ A ∗ A x = ( A x , A x ) = ∣ ∣ A x ∣ ∣ 2 ≥ 0 ⇒ A ∗ A x^*A^*Ax=(Ax,Ax)=||Ax||^2\ge 0\Rightarrow A^*A xAAx=(Ax,Ax)=Ax20AA半正定,同理, A A ∗ AA^* AA半正定

  • A A ∗ AA^* AA或者 A ∗ A A^*A AA的特征值开方等于奇异值

  • A A ∗ AA^* AA的单位正交特征向量为 α 1 , α 2 , . . . , α r , A ∗ A \alpha_1,\alpha_2,...,\alpha_r,A^*A α1,α2,...,αr,AA的单位正交特征向量为 A ∗ α 1 λ 1 , A ∗ α 2 λ 2 , . . . , A ∗ α r λ r \frac{A^*\alpha_1}{\sqrt\lambda_1},\frac{A^*\alpha_2}{\sqrt\lambda_2},...,\frac{A^*\alpha_r}{\sqrt\lambda_r} λ 1Aα1,λ 2Aα2,...,λ rAαr

奇异值分解变体–极分解

  当 A A A是一个方阵时, A = U D V ∗ = ( U D U ∗ ) ( U V ∗ ) A=UDV^*=(UDU^*)(UV^*) A=UDV=(UDU)(UV),其中 U D U ∗ UDU^* UDU是一个Hermite阵且特征值大于等于 0 0 0,因此 U D U ∗ UDU^* UDU是半正定阵; U V ∗ UV^* UV是两个酉矩阵相乘,结果仍然为酉矩阵,若 A A A可逆,则 D i i > 0 , U D U ∗ D_{ii}>0,UDU^* Dii>0,UDU是正定阵。

例1:证明 A n × n , r ( A ) = r A_{n\times n},r(A)=r An×n,r(A)=r可以分解为幂等阵与可逆阵的乘积,即 A = P Q , P , Q A=PQ,P,Q A=PQ,P,Q分别为幂等阵与可逆阵

方法一:

证明:已知幂等矩阵的特征值为0或1,不妨令 B = d i a g ( 1 , 1... , 1 , 0 , . . . , 0 ) B=diag(1,1...,1,0,...,0) B=diag(1,1...,1,0,...,0),其中1的个数为r

A = U D V ∗ = U ( B D ) V ∗ = U ( B D ′ ) V ∗ = ( U B U ∗ ) ( U D ′ V ∗ ) , D ′ = d i a g ( δ 1 , δ 2 , . . . , δ r , 1 , . . . , 1 ) A=UDV^*=U(BD)V^*=U(BD')V^*=(UBU^*)(UD'V^*),D'=diag(\delta_1,\delta_2,...,\delta_r,1,...,1) A=UDV=U(BD)V=U(BD)V=(UBU)(UDV)D=diag(δ1,δ2,...,δr,1,...,1)

​ 令 P = U B U ∗ , Q = U D ′ V ∗ ⇒ P 2 = U B U ∗ U B U ∗ = U B 2 U ∗ = U B U ∗ = P ⇒ P P=UBU^*,Q=UD'V^*\Rightarrow P^2=UBU^*UBU^*=UB^2U^*=UBU^*=P\Rightarrow P P=UBU,Q=UDVP2=UBUUBU=UB2U=UBU=PP是幂等阵

​ 又令 Q = U D ′ V ∗ Q=UD'V^* Q=UDV,由 U , D ′ , V ∗ U,D',V^* U,D,V均为可逆阵得 Q Q Q为可逆阵

⇒ A = P Q \Rightarrow A=PQ A=PQ证毕

方法二:

证明:设 P ′ , Q ′ P',Q' P,Q A A A的行、列变换阵,使得A化为形如 B = d i a g ( 1 , 1... , 1 , 0 , . . . , 0 ) B=diag(1,1...,1,0,...,0) B=diag(1,1...,1,0,...,0)形式

​ 则 P ′ A Q ′ = B ⇒ A = P ′ − 1 B Q ′ − 1 = ( P ′ − 1 B P ′ ) ( P ′ − 1 Q ′ − 1 ) P'AQ'=B\Rightarrow A=P'^{-1}BQ'^{-1}=(P'^{-1}BP')(P'^{-1}Q'^{-1}) PAQ=BA=P1BQ1=(P1BP)(P1Q1)

​ 其中令 P = P ′ − 1 B P ′ , Q = P ′ − 1 Q ′ − 1 P=P'^{-1}BP',Q=P'^{-1}Q'^{-1} P=P1BP,Q=P1Q1,则 P , Q P,Q P,Q分别是幂等阵与可逆阵, A = P Q A=PQ A=PQ证毕。

例2:试将正规矩阵 A A A的谱分解改写为奇异值分解

解: A A A的谱分解为 A = U B U ∗ A=UBU^* A=UBU,其中 U U U是酉矩阵, B = d i a g ( λ 1 , λ 2 , . . . , λ r , 0 , . . . , 0 ) B=diag(\lambda_1,\lambda_2,...,\lambda_r,0,...,0) B=diag(λ1,λ2,...,λr,0,...,0)

​ 将 B B B改写为 B = P Q , P = d i a g ( ∣ λ 1 ∣ , ∣ λ 2 ∣ , . . . , ∣ λ r ∣ , 0 , . . . , 0 ) , Q = d i a g ( λ 1 ∣ λ 1 ∣ , λ 2 ∣ λ 2 ∣ , . . . , λ r ∣ λ r ∣ , 1 , . . . , 1 ) B=PQ,P=diag(|\lambda_1|,|\lambda_2|,...,|\lambda_r|,0,...,0) ,Q= diag(\frac{\lambda_1}{|\lambda_1|},\frac{\lambda_2}{|\lambda_2|},...,\frac{\lambda_r}{|\lambda_r|},1,...,1) B=PQ,P=diag(λ1,λ2,...,λr,0,...,0),Q=diag(λ1λ1,λ2λ2,...,λrλr,1,...,1)

​ 其中 P P P是半正定矩阵, Q Q Q是酉矩阵,令 V ∗ = Q U ∗ V^*=QU^* V=QU

⇒ A = U P V ∗ \Rightarrow A=UPV^* A=UPV,改写完成

注:其实可以利用极分解来改写, A = U B U ∗ , B = P Q , P A=UBU^*,B=PQ,P A=UBU,B=PQP是半正定阵, Q Q Q是酉矩阵…

例3:已知 A = U D 1 U ∗ , B = V D 2 V ∗ , D 1 , D 2 A=UD_1U^*,B=VD_2V^*,D_1,D_2 A=UD1U,B=VD2V,D1,D2是半正定矩阵,求 C = [ 0 A B 0 ] C=\begin{bmatrix}0&A\\B&0\end{bmatrix} C=[0BA0]的奇异值分解

解: C = [ 0 A B 0 ] = [ A 0 0 B ] ⋅ [ 0 1 1 0 ] = [ U 0 0 V ] ⋅ [ D 1 0 0 D 2 ] ⋅ [ U ∗ 0 0 V ∗ ] [ 0 1 1 0 ] C=\begin{bmatrix}0&A\\B&0\end{bmatrix}=\begin{bmatrix}A&0\\0&B\end{bmatrix}\cdot \begin{bmatrix}0&1\\1&0\end{bmatrix}=\begin{bmatrix}U&0\\0&V\end{bmatrix}\cdot \begin{bmatrix}D_1&0\\0&D_2\end{bmatrix}\cdot \begin{bmatrix}U^*&0\\0&V^*\end{bmatrix}\begin{bmatrix}0&1\\1&0\end{bmatrix} C=[0BA0]=[A00B][0110]=[U00V][D100D2][U00V][0110]

= [ U 0 0 V ] ⋅ [ D 1 0 0 D 2 ] ⋅ [ 0 U ∗ V ∗ 0 ] =\begin{bmatrix}U&0\\0&V\end{bmatrix}\cdot \begin{bmatrix}D_1&0\\0&D_2\end{bmatrix}\cdot \begin{bmatrix}0&U^*\\V^*&0\end{bmatrix} =[U00V][D100D2][0VU0]

​ 设 D 1 = d i a g ( δ 1 , δ 2 , . . . , δ r 1 , 0 , . . . , 0 ) , D 2 = d i a g ( δ r 1 + 1 , δ r 1 + 2 , . . . , δ r 1 + r 2 , 0 , . . . , 0 ) D_1=diag(\delta_1,\delta_2,...,\delta_{r_1},0,...,0),D_2=diag(\delta_{r_1+1},\delta_{r_1+2},...,\delta_{r_1+r_2},0,...,0) D1=diag(δ1,δ2,...,δr1,0,...,0),D2=diag(δr1+1,δr1+2,...,δr1+r2,0,...,0),存在行列变换矩阵 P 2 n × 2 n , Q 2 n × 2 n P_{2n\times 2n},Q_{2n\times 2n} P2n×2n,Q2n×2n使得 P ⋅ [ D 1 0 0 D 2 ] ⋅ Q = D = d i a g ( δ 1 , δ 2 , . . . , δ r 1 + r 2 , 0 , . . . , 0 ) P\cdot\begin{bmatrix}D_1&0\\0&D_2\end{bmatrix}\cdot Q=D=diag(\delta_1,\delta_2,...,\delta_{r_1+r_2},0,...,0) P[D100D2]Q=D=diag(δ1,δ2,...,δr1+r2,0,...,0)

​ 由于该行列变换只涉及行列交换运算,因此 P , Q P,Q P,Q是酉矩阵(证明略)

​ 令 U C = [ U 0 0 V ] ⋅ P − 1 , V C ∗ = Q − 1 ⋅ [ 0 U ∗ V ∗ 0 ] U_C=\begin{bmatrix}U&0\\0&V\end{bmatrix}\cdot P^{-1},V_C^*=Q^{-1}\cdot\begin{bmatrix}0&U^*\\V^*&0\end{bmatrix} UC=[U00V]P1,VC=Q1[0VU0]

⇒ C = U C ⋅ D ⋅ V C ∗ \Rightarrow C=U_C\cdot D\cdot V_C^* C=UCDVC

从奇异值分解中得到四个子空间

已知 A = U D V ∗ A=UDV^* A=UDV,设 U = ( α 1 , α 2 , . . . , α r , α r + 1 , . . . , α m ) , V = ( β 1 , β 2 , . . . , β r , β r + 1 , . . . , β n ) U=(\alpha_1,\alpha_2,...,\alpha_r,\alpha_{r+1},...,\alpha_{m}),V=(\beta_1,\beta_2,...,\beta_r,\beta_{r+1},...,\beta_{n}) U=(α1,α2,...,αr,αr+1,...,αm),V=(β1,β2,...,βr,βr+1,...,βn)

则:
N ( A ) = S p a n ( β r + 1 , . . . , β n ) N(A)=Span(\beta_{r+1},...,\beta_n) N(A)=Span(βr+1,...,βn)

N ( A ∗ ) = S p a n ( α r + 1 , . . . , α m ) N(A^*)=Span(\alpha_{r+1},...,\alpha_m) N(A)=Span(αr+1,...,αm)

C ( A ) = S p a n ( α 1 , α 2 , . . . , α r ) C(A)=Span(\alpha_1,\alpha_2,...,\alpha_r) C(A)=Span(α1,α2,...,αr)

R ( A ) = S p a n ( β 1 , β 2 , . . . , β r ) R(A)=Span(\beta_1,\beta_2,...,\beta_r) R(A)=Span(β1,β2,...,βr)

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值