全概率定理理解:有多种方式A、B、C使你走向成功,但也可能让你失败,问你成功的概率是多少?解法为:把每一种方式成功的概率进行累加
贝叶斯定理理解:你已经成功了,现在想知道你通过方式A成功的概率是多少?
条件概率:
维基百科:(英语:conditional probability)就是事件A在事件B发生的条件下发生的概率。条件概率表示为P(A|B),读作“A在B发生的条件下发生的概率”。
定义: 设 A 与 B 为样本空间 Ω 中的两个事件,其中 P(B)>0。那么在事件 B 发生的条件下,事件 A 发生的条件概率为:
可以理解为:在B发生的条件下,A发生的概率,也可以这样来说:在B的结果中(B肯定发生),A这种情况发生的概率。从上图可以看出,B发生的条件下,A发生的概率就是图中深色的
举例来说:班级有男:12,女:10人,有带杯子的7人,其中男生:4人,女生:3人,那么问:男生中有人带杯子的概率?
这个题目解释为:在为男生的条件下(一定要是男生,这个发生的概率已经是100%),带杯子的概率是多少?即男生一共12人,其中带杯子的为4人,那么男生中有人带杯子的概率:4/12=1/3
由以上公式可以得到: ,
,
,可以推出:
全概率:
维基百科:全概率定理(Law of total probability),假设{ Bn : n = 1, 2, 3, ... } 是一个概率空间的有限或者可数无限的分割(既 Bn为一完备事件组),且每个集合Bn是一个可测集合,则对任意事件A有全概率公式:
又因为
此处Pr(A | B)是B发生后A的条件概率,所以全概率公式又可写作:
全概率公式将对一复杂事件A的概率求解问题转化为了在不同情况或不同原因 Bn下发生的简单事件A的概率的求和问题。即将时间A分解为不同的小的子块,计算在每一个子块发生的条件下,A发生的概率之和
以两种情况为例,如下图,假定样本空间S,是两个事件A与A'的和。计算B发生的概率,需要计算在A发生的情况下B发生的概率和A' 发生的情况下,B发生的概率。
得到全概率公式:
引入条件概率的公式,得到另一种条件概率的写法:
贝叶斯概率
贝叶斯定理(英语:Bayes' theorem)描述在已知一些条件下,某事件的发生概率。
贝叶斯定理是关于随机事件A和B的条件概率的一则定理。
其中以及B为随机事件,且P(B)不为零。
是指在事件B发生的情况下事件A发生的概率。
贝叶斯定理的公式很容易从条件概率中推倒而来,
得到:
在文章最前面对贝叶斯定理的理解,已知一个结果,求解的是有A事件导致这个结果的概率是多少?相同的例子,班级有男:12,女:10人,有带杯子的7人,其中男生:4人,女生:3人,那么问:已知有个同学带了杯子,那么这个同学是女同学的概率是多少?
这个可以理解为:有个同学带了杯子,这是结果,如果把带杯子事件记为C,那么男生记为A, 女生记为B,那么拿杯子的概率为 是男生并且男生拿杯子的概率+ 是女生并且女生拿杯子的概率,题目问的是已知有个同学带了杯子,那么这个同学是女同学的概率是多少?
由P(C)的构成可以知道,女同学拿杯子的概率占同学拿杯子的概率为:
结果是:= 10/22 * 3/10 / (12/22 * 4/12 + 10/22 * 3/10) = 3/7
在贝叶斯定理中,每个名词都有约定俗成的名称:
参考:条件概率,全概率,贝叶斯公式理解 - 云+社区 - 腾讯云
推荐: 极大似然估计详解_知行流浪-CSDN博客_极大似然估计
推荐: 通俗理解极大似然估计_Mingsheng Zhang的博客-CSDN博客_极大似然估计
备注:
1. 什么是完备事件组?
设S为样本空间,B1,B2,…,Bn的一组事件。若
(i)Bi ∩ Bj=∅ (i≠j且i、j=1,2,…,n);
(ii)B1∪B2∪…∪Bn=S,
则称B1,B2,…,Bn为样本空间S的一个完备事件组(划分)。
可以理解为这些完备事件组的集合构成了样本空间,但是每个事件是不重合的