通俗理解贝叶斯,全概率定理

本文深入浅出地介绍了概率论中的全概率定理和贝叶斯定理。全概率定理用于计算复杂事件发生的概率,通过将事件分解为互斥的子事件并累加它们各自的成功概率。而贝叶斯定理则是在已知结果的情况下,反推导致该结果的原因的概率。通过实例解释了如何运用这两个定理解决实际问题,如计算在特定条件下事件发生的概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全概率定理理解:有多种方式A、B、C使你走向成功,但也可能让你失败,问你成功的概率是多少?解法为:把每一种方式成功的概率进行累加

贝叶斯定理理解:你已经成功了,现在想知道你通过方式A成功的概率是多少?

条件概率:

维基百科:(英语:conditional probability)就是事件A在事件B发生的条件下发生的概率。条件概率表示为PA|B),读作“AB发生的条件下发生的概率”。

定义: 设 A 与 B 为样本空间 Ω 中的两个事件,其中 P(B)>0。那么在事件 B 发生的条件下,事件 A 发生的条件概率为:

                                                     {\displaystyle P(A|B)={\frac {P(A\cap B)}{P(B)}} }             

可以理解为:在B发生的条件下,A发生的概率,也可以这样来说:在B的结果中(B肯定发生),A这种情况发生的概率。从上图可以看出,B发生的条件下,A发生的概率就是图中深色的                                                                         {\displaystyle{\frac {P(A\cap B)}{P(B)}}}

举例来说:班级有男:12,女:10人,有带杯子的7人,其中男生:4人,女生:3人,那么问:男生中有人带杯子的概率?

这个题目解释为:在为男生的条件下(一定要是男生,这个发生的概率已经是100%),带杯子的概率是多少?即男生一共12人,其中带杯子的为4人,那么男生中有人带杯子的概率:4/12=1/3

           由以上公式可以得到:{\displaystyle P(A\cap B) = P(A|B) P(B) } , {\displaystyle P(A\cap B) = P(B|A) P(A) },{\displaystyle P(B|A) P(A) = P(A|B) P(B) },可以推出:

                                                {\displaystyle P(A|B)={\frac {P(B|A)P(A))}{P(B)}} }

全概率:

维基百科:全概率定理(Law of total probability),假设{ Bn : n = 1, 2, 3, ... } 是一个概率空间的有限或者可数无限的分割(既 Bn为一完备事件组),且每个集合Bn是一个可测集合,则对任意事件A全概率公式

                                        {\displaystyle P(A)=\sum _{n}P(A\cap B_{n})\,}

又因为

                                      {\displaystyle P(A\cap B_{n})=P(A\mid B_{n})P(B_{n}),}

此处Pr(A | B)是B发生后A条件概率,所以全概率公式又可写作:

                                     {\displaystyle P(A)=\sum _{n}P(A\mid B_{n})P(B_{n}).\,}

全概率公式将对一复杂事件A的概率求解问题转化为了在不同情况或不同原因 Bn下发生的简单事件A的概率的求和问题。即将时间A分解为不同的小的子块,计算在每一个子块发生的条件下,A发生的概率之和

以两种情况为例,如下图,假定样本空间S,是两个事件A与A'的和。计算B发生的概率,需要计算在A发生的情况下B发生的概率和A' 发生的情况下,B发生的概率。

 得到全概率公式

             {\displaystyle P(B)=P(B \cap A) + P(B \cap A') = P(B\mid A)P(A) + P(B\mid A')P(A') }

引入条件概率的公式,得到另一种条件概率的写法

                           {\displaystyle P(A|B)={\frac {P(B|A)P(A)}{ P(B)} } = {\frac {P(B|A)P(A)}{ P(B\mid A)P(A) + P(B\mid A')P(A') }} }

贝叶斯概率

贝叶斯定理(英语:Bayes' theorem)描述在已知一些条件下,某事件的发生概率。

贝叶斯定理是关于随机事件A和B的条件概率的一则定理。

{\displaystyle P(A\mid B)={\frac {P(A)P(B\mid A)}{P(B)}}}

其中{\displaystyle A}以及B为随机事件,且P(B)不为零。{\displaystyle P(A\mid B)}是指在事件B发生的情况下事件A发生的概率。

贝叶斯定理的公式很容易从条件概率中推倒而来,

                                                {\displaystyle P(B|A) P(A) = P(A|B) P(B) }

得到:

                                               {\displaystyle P(A\mid B)={\frac {P(A)P(B\mid A)}{P(B)}}}

 在文章最前面对贝叶斯定理的理解,已知一个结果,求解的是有A事件导致这个结果的概率是多少?相同的例子,班级有男:12,女:10人,有带杯子的7人,其中男生:4人,女生:3人,那么问:已知有个同学带了杯子,那么这个同学是女同学的概率是多少?

这个可以理解为:有个同学带了杯子,这是结果,如果把带杯子事件记为C,那么男生记为A, 女生记为B,那么拿杯子的概率为 是男生并且男生拿杯子的概率+ 是女生并且女生拿杯子的概率,题目问的是已知有个同学带了杯子,那么这个同学是女同学的概率是多少?

                             {\displaystyle P(C)={P(A)P(C\mid A) + P(B)P(C\mid B) }} 

由P(C)的构成可以知道,女同学拿杯子的概率占同学拿杯子的概率为:

                 {\displaystyle P(B\mid C)={\frac {P(B)P(C\mid B)}{P(C)}}} = {\frac {P(B)P(C\mid B)} {P(A)P(C\mid A) + P(B)P(C\mid B) }}

 结果是:= 10/22 * 3/10 / (12/22 * 4/12 + 10/22 * 3/10) = 3/7

在贝叶斯定理中,每个名词都有约定俗成的名称:

参考:条件概率,全概率,贝叶斯公式理解 - 云+社区 - 腾讯云

推荐: 极大似然估计详解_知行流浪-CSDN博客_极大似然估计

推荐: 通俗理解极大似然估计_Mingsheng Zhang的博客-CSDN博客_极大似然估计

备注:

1. 什么是完备事件组?

设S为样本空间,B1,B2,…,Bn的一组事件。若

(i)Bi ∩ Bj=∅ (i≠j且i、j=1,2,…,n);

(ii)B1∪B2∪…∪Bn=S,

则称B1,B2,…,Bn为样本空间S的一个完备事件组(划分)。

可以理解为这些完备事件组的集合构成了样本空间,但是每个事件是不重合的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值