一文彻底搞懂大模型 - Fine-tuning三种微调方式

Fine-tuning

在生成式AI和大语言大模型(如GPT、LLaMA)的广泛应用中,微调(Fine-tuning)作为模型适应特定任务的关键步骤,其重要性不言而喻。以下将详细介绍三种流行的微调方式:Prompt-tuning、Prefix-tuning和LoRA,深入理解每种方法的原理、特点及应用场景。

Fine-tuning

方式一:Prompt-tuning

什么是Prompt-tuning?Prompt-tuning通过修改输入文本的提示(Prompt)来引导模型生成符合特定任务或情境的输出,而无需对模型的全量参数进行微调。

这种方法利用了预训练语言模型(PLM)在零样本或少样本学习中的强大能力,通过修改输入提示来激活模型内部的相关知识和能力。

Prompt-tuning

核心原理:PLM(预训练模型)不变,W(模型的权重)不变,X(模型输入)改变。

Prompt-tuning

如何进行Prompt-tuning?小模型适配下游任务

设计任务相关提示模板,并微调提示嵌入以引导预训练模型适应特定任务。仅需微调少量提示嵌入(Prompt Embeddings),而非整个模型参数。

Prompt-tuning

  1. 设计提示模板:
  • 模板中应包含任务描述、输入文本占位符、输出格式要求等元素。
  1. 准备数据集:
  • 数据集应包括输入文本、真实标签(对于监督学习任务)或预期输出格式(对于生成任务)。
  1. 微调提示嵌入:
  • 在预训练模型的输入层添加提示嵌入层,使用数据集对模型进行训练,特别是微调提示嵌入。

Prompt-tuning

方式二:Prefix-tuning

什么是Prefix-tuning?Prefix-tuning是Prompt-tuning的一种变体, 它通过在输入文本前添加一段可学习的“前缀”来指导模型完成任务。

**这个前缀与输入序列一起作为注意力机制的输入,从而影响模型对输入序列的理解和表示。**由于前缀是可学习的,它可以在微调过程中根据特定任务进行调整,使得模型能够更好地适应新的领域或任务。

Prefix-tuning

******核心原理:******PLM(预训练模型)不变,W(模型的权重)不变,X(模型输入)不变,增加W’(前缀嵌入的权重)。

Prefix-tuning

**如何进行Prefix-tuning?**在 Transformer 中适配下游任务

在Transformer模型的输入层或各层输入前添加可学习的前缀嵌入,并通过训练这些前缀嵌入来优化模型在特定任务上的表现。

  1. 初始化前缀嵌入
  • 在Transformer模型的输入层之前,初始化一个固定长度的前缀嵌入矩阵。
  1. 将前缀嵌入与输入序列拼接
  • 将初始化好的前缀嵌入与原始输入序列的词嵌入进行拼接,形成新的输入表示。这个新的输入表示将作为Transformer模型各层的输入。
  1. 训练模型
  • 在训练过程中,模型会根据输入序列(包括前缀嵌入)和标签数据进行学习。通过反向传播算法,模型会更新前缀嵌入的参数。

Prefix-tuning

方式三:LoRA

****什么是LoRA?****LoRA(Low-Rank Adaptation)通过分解预训练模型中的部分权重矩阵为低秩矩阵,并仅微调这些低秩矩阵的少量参数来适应新任务。

**对于预训练权重矩阵W0∈Rd×d𝑊0∈𝑅𝑑×𝑑,LoRa限制了其更新方式,即将全参微调的增量参数矩阵ΔWΔ𝑊表示为两个参数量更小的矩阵A、B,**即ΔW = AB。

其中,B∈Rd×r𝐵∈𝑅𝑑×𝑟和A∈Rr×d𝐴∈𝑅𝑟×𝑑为LoRA低秩适应的权重矩阵,秩r𝑟远小于d𝑑。

LoRA

核心原理:W(模型的权重)不变,X(模型输入)不变,分解ΔW(分解为两个低秩矩阵A、B**)。******

LoRA

如何进行LoRA微调**?在冻结预训练模型权重的基础上,通过优化算法训练低秩矩阵A和B以近似增量参数,最小化下游任务损失,从而实现高效的模型微调。**

  1. 设置LoRA模块
  • 在预训练模型的基础上,添加LoRA模块。LoRA模块通常包含两个参数量较少的矩阵A和B,它们的乘积用于近似全参数微调中的增量参数。

  • 初始化矩阵A和B,通常使用高斯函数进行初始化,以确保训练开始时LoRA的旁路(即BA)为0,从而与全参数微调有相同的起始点。

  1. 训练LoRA模块
  • 在训练过程中,冻结预训练模型的权重,仅训练LoRA模块中的矩阵A和B。

  • 通过优化算法(如Adam)更新矩阵A和B的参数,以最小化下游任务的损失函数。

LoRA

LLaMA-Factory通过集成LoRA微调方法,为大型语言模型提供高效、低成本的微调方案,支持多模型、多算法和实时监控,仅训练低秩矩阵实现快速适应新任务。

LLaMA-Factory

******LoRA参数主要包括秩(lora_rank,影响性能和训练时间)、缩放系数(lora_alpha,确保训练稳定)和Dropout系数(lora_dropout,防止过拟合)**************,它们共同影响模型微调的效果和效率。

1. 秩(Rank)

  • 参数名称:lora_rank

  • 描述:秩是LoRA中最重要的参数之一,它决定了低秩矩阵的维度。

  • 常用值:对于小型数据集或简单任务,秩可以设置为1或2;对于更复杂的任务,秩可能需要设置为4、8或更高。

2. 缩放系数(Alpha)

  • 参数名称:lora_alpha

  • 描述:缩放系数用于在训练开始时对低秩矩阵的更新进行缩放。

  • 常用值:缩放系数的具体值取决于秩的大小和任务的复杂度。

3. Dropout系数

  • 参数名称:lora_dropout

  • 描述:Dropout系数决定了在训练过程中随机丢弃低秩矩阵中元素的概率。

  • 常用值:Dropout系数的常用值范围在0到1之间。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值