视频检索性能评价指标
视频检索中的常见评价指标有:Accuracy(准确率)、精确度(Precision)、Recall(召回率)和F1-Measure。这几项指标的计算都需要根据视频检索结果定义TP、FP、FN和TN,详见下表。
Relevant | Irrelevant | |
---|---|---|
Positive(P) | TP:正类判为正类 | FP:负类判为正类 |
Negtive(N) | FN:正类判为负类 | TN:负类判为负类 |
⚠️ 注:
- T/F为视频检索结果的正确与否,正类判为正类表明检索结果为T,正类判为负类表明检索结果为F;
- P/N为视频检索结果中的正负类结果,正类结果为P,负类结果为N。
定义
有了以上的说明,我们就可以引入Accuracy(准确率)、Recall(召回率)和F1-Measure的定义:
A c c u r a c y = T P + T N T P + F P + F N + T N = 检 索 正 确 的 样 本 数 样 本 总 数 Accuracy = \frac{TP+TN}{TP + FP + FN + TN} = \frac{检索正确的样本数}{样本总数} Accuracy=TP+FP+FN+TNTP+TN=样本总数检索正确的样本数
P r e c i s i o n = T P T P + F P = 检 索 结 果 中 的 正 样 本 数 检 索 结 果 总 样 本 数 Precision = \frac{TP}{TP+FP} = \frac{检索结果中的正样本数}{检索结果总样本数} Precision=TP+FPTP=