交通流量预测一直是交通管理和规划中的重要问题之一。随着机器学习和深度学习的发展,LSTM(长短期记忆网络)成为用于时间序列预测的强大工具。本文将介绍如何使用LSTM模型进行交通流量预测,使用多个特征来提高预测的准确性。
首先,我们需要准备数据集。我们将使用历史交通流量数据作为训练集,其中包含多个特征,如时间、日期、天气状况等。我们的目标是根据过去一段时间的特征数据来预测未来某个时间点的交通流量。
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential