LSTM多特征的交通流量预测 - 详细代码实现

113 篇文章 34 订阅 ¥59.90 ¥99.00
本文探讨了利用LSTM模型预测交通流量的方法,强调了多特征的重要性。通过Python处理数据,应用MinMaxScaler进行预处理,构建包含两层LSTM的模型,并以RMSE评估性能。该模型能提升预测准确性,为进一步优化,可调整模型参数。
摘要由CSDN通过智能技术生成

交通流量预测一直是交通管理和规划中的重要问题之一。随着机器学习和深度学习的发展,LSTM(长短期记忆网络)成为用于时间序列预测的强大工具。本文将介绍如何使用LSTM模型进行交通流量预测,使用多个特征来提高预测的准确性。

首先,我们需要准备数据集。我们将使用历史交通流量数据作为训练集,其中包含多个特征,如时间、日期、天气状况等。我们的目标是根据过去一段时间的特征数据来预测未来某个时间点的交通流量。

import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
LSTM(Long Short-Term Memory,长短期记忆网络)是一种递归神经网络,特别适合处理序列数据,如时间序列预测,包括交通流量预测。以下是使用Python和Keras库编写的一个简化的LSTM模型用于交通流量预测的基本步骤: ```python # 导入所需库 from keras.models import Sequential from keras.layers import LSTM, Dense import numpy as np from sklearn.preprocessing import MinMaxScaler # 假设我们有如下数据集 data = ... # 历史交通流量数据 (时间序列) look_back = 10 # 需要考虑的历史步数 train_size = int(len(data) * 0.8) # 训练集大小 test_size = len(data) - train_size # 测试集大小 # 数据预处理 scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(np.array(data).reshape(-1, 1)) # 划分训练集和测试集 X_train, y_train = [], [] for i in range(train_size): X_train.append(scaled_data[i:(i+look_back), 0]) y_train.append(scaled_data[i + look_back, 0]) X_train, y_train = np.array(X_train), np.array(y_train) X_test, y_test = scaled_data[train_size:], scaled_data[train_size+look_back:] # reshape输入数据以适应LSTM X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 创建LSTM模型 model = Sequential() model.add(LSTM(50, return_sequences=True, input_shape=(look_back, 1))) model.add(LSTM(50)) model.add(Dense(1)) # 编译模型 model.compile(loss='mean_squared_error', optimizer='adam') # 训练模型 model.fit(X_train, y_train, epochs=100, batch_size=1, verbose=2) # 预测 predictions = model.predict(X_test) # 反归一化预测结果 predictions = scaler.inverse_transform(predictions)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值