MATLAB之导出自带classification learner生成的图

2021-08-30 更新
Matlab 2020b已经更新了learner, 现在app里有按钮可以直接导出了.
在这里插入图片描述

classification learner是matlab自带的一个用于分类的机器学习工具箱,使用起来十分方便。
画出的图有时需要导出放到论文里,但是里面并没有相关按钮。

这时可以使用

hFigs = findall(groot,'type','figure');

来导出图的句柄,根据句柄里的名字来判断到底是哪一张图。在做对应的编辑。
可以使用saveas来导出pdf

### 如何在MATLAB Classification Learner App中进行特征选择和提取 #### 启动Classification Learner应用并加载数据 为了开始处理特征,在MATLAB环境中通过APP选项卡找到并点击Classification Learner来启动此应用程序[^3]。一旦打开,需先导入要分析的数据集。 #### 导入数据集 当准备就绪后,可以通过多种方式将所需的数据引入到Classification Learner当中。这一步骤对于后续操作至关重要,因为只有正确地载入含有标签(即响应变量)在内的全部样本才能继续下一步的工作[^5]。 #### 特征选择界面 进入主界面后,可以看到左侧有一个名为“Features”的区域,这里显示了当前所选数据集中所有可用作输入的特性名称列表。如果希望减少不必要的维度或是探索不同组合的效果,则可在此处勾选想要保留下来的那些属性前的小方框来进行自定义设置[^1]。 #### 使用内置算法执行特征选择 除了手动挑选外,还可以利用软件内部集成的一些自动化方法辅助完成这一过程: - **PCA降维**:Principal Component Analysis(PCA),能够有效地降低多维空间内的复杂度同时尽可能保持原有信息量不变; - **ReliefF权重评分法**:基于实例间的距离计算各字段的重要性得分,从而指导去除贡献较小者; 这些技术都可通过菜单栏下的Feature Selection子项获得访问权限,并按照提示逐步配置参数直至满意为止[^4]。 ```matlab % 假设已经选择了合适的方法并完成了初步筛选, % 可以导出经过优化后的模型以便进一步研究或部署。 trainedModel = export(trainedClassifier); ```
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值