YOLOv5代码解析——yolo.py

       

 yolo.py的主要功能是构建模型。

1、最主要的函数是parse_model,用于解析yaml文件,并根据解析的结果搭建网络。这个函数的注释如下:

def parse_model(d, ch):  # model_dict, input_channels(3)
    """
    解析模型文件,并搭建网络结构
    主要实现功能:更新当前层args,计算c2(当前层的输出channel)   => 使用当前层的参数搭建当前层 => 生成layers+save
    :params d: model_dict
    :params ch: 记录模型每一层的输出channel,初始 ch=[3],后边会删除
    :return nn.Sequential(*layers): 网络的每一层的层结构
    :return sorted(save): 把所有层结构中from不是-1的值记下,并排序[4,6,10,14,17,20,23]
    """
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    # 可以在yaml文件中指定激活函数,如何使用待定
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    
    # 三个检测头的参数:3*(20+5) = 75(VOC)
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors = 3
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    ############################## 开始搭建网络 ###################################
    # layers保存每一层的层结构
    # save 记录下所有层结构中from不是-1的结构序号
    # c2:保存当前层输出的channel
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    # from(当前输入来自哪些层) number(当前的层数) module(当前层类别) args(当前层参数)
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        # 得到当前层的真实类名 m = Focus -> <class 'models.common.Focus'>
        m = eval(m) if isinstance(m, str) else m  # eval strings
        
        for j, a in enumerate(args):
            # 处理eval函数中出现变量未定义的情况(NameError)
            # 如果a是一个字符串类型(str),则将其作为表达式进行求值,得到结果。如果a不是字符串类型,则直接使用a的值。
            # 把结果赋值给args[j],以此实现动态地根据字符串表达式来更新args参数列表
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
        # n当前层数 gd depth_multiple 
        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            # c1当前层的输出channel c2当前层的输出channel ch 记录所有层的输出channel
            c1, c2 = ch[f], args[0]
            # 确保c2*gw能够被8整除,如果不能返回一个能够被8整除的最接近于c2*gw的数
            # 如果不最后一层的output,就控制宽度,最后一层的channel必须是no
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)
            
            # 在初始args上更新,加入当前层的输入channel
            args = [c1, c2, *args[1:]] # [in_channel,out_channel,*args[1:]]
            
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                # 在第二个位置上插入bottleneck的个数n
                args.insert(2, n)  # number of repeats 
                n = 1 # 恢复默认值1
        elif m is nn.BatchNorm2d:
            # 返回上一层的输出channel
            args = [ch[f]]
        elif m is Concat:
            # 把f中的输出累加到这层的channel
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            # 在args中加入三个Detect层的输出channel
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors # 几乎不执行
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract: # 几乎不使用
            c2 = ch[f] * args[0] ** 2
        elif m is Expand: # 几乎不使用
            c2 = ch[f] // args[0] ** 2
        else:
            # Unsample args不变
            c2 = ch[f]
        
        # 调用m(类)根据参数args创建当前层的module并赋值给m_,创建数量为n,
        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        
        # 打印一些基本信息
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        # 把所有层结构中from不是-1的值记下[6,4,14,10,17,20,23]
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        # 把当前层结构module加入到layers中
        layers.append(m_)
        
        if i == 0:
            ch = [] # 去除输入channel
    
        # 把当前层输出的channel加入ch
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

parse_model在DetectionModel的__init__函数中调用。

# 调用parse_model
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

2、Detect类用于构建最后的detect层,在parse_model函数中调用

# 构建Detect层,把feature map通过一个卷积操作和公式计算到需要的shape,为后边计算loss和NMS做准备。
class Detect(nn.Module):
    # YOLOv5 Detect head for detection models
    stride = None  # strides computed during build
    dynamic = False  # force grid reconstruction
    export = False  # export mode

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        """
        detection layer相当于yolov3的YOLOLayer层
        :params nc: number of class
        :params anchors:传入3个feature map上的所有anchor的大小(P3,P4,P5)
        :params ch:[128,256,512] 3个输出feanture map的chaannel
        """
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors 每个feature map的anchor个数
        self.grid = [torch.empty(0) for _ in range(self.nl)]  # init grid 
        self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]  # init anchor grid 
        # 模型中需要保存的参数有两种:一种是需要使用optimizer更新的,一种是不需要被更新的称为buffer
        # buffer的参数更新在forward,而optim.step只能更新nn.parameter类型的参数
        # anchor.shape = shape(nl,na,2)
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        # 对每个输出feature map都调用一次conv1*1
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        # 默认为True,默认不使用AWS Inferentia加速
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)

    def forward(self, x):
        """
        :return train:一个tensor list存放三个元素[bs, anchor_num, grid_w, grid_h, xywh+classes]
                      以VOC为例,[1, 3, 80, 80, 25] [1, 3, 40, 40, 25] [1, 3, 20, 20, 25]
                inference:0 preds [1, 19200+4800+1200, 25] = [bs, anchor_num*grid_w*grid_h, xywh+classes]
                    1 train_out :一个tensor list存放三个元素[bs, anchor_num, grid_w, grid_h, xywh+classes]
                                 [1, 3, 80, 80, 25] [1, 3, 40, 40, 25] [1, 3, 20, 20, 25]
        """
        z = []  # inference output
        for i in range(self.nl): # 对3个feature map分别进行处理
            
            x[i] = self.m[i](x[i])  # conv
            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
            # [bs, 75, 80, 80] to [bs, 3, 25, 80, 80] to [bs, 3, 80, 80, 25]
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            
            if not self.training:  # inference
                # inference 返回的不是归一化后的网格的偏移量,需要加上网格的位置,得到最终的预测坐标,再送入NMS
                # 构建网络就是为了记录每个grid的网格坐标,方便后边使用
                # dynamic默认为false
                if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                if isinstance(self, Segment):  # (boxes + masks)
                    xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
                    xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
                else:  # Detect (boxes only)
                    xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
                    xy = (xy * 2 + self.grid[i]) * self.stride[i]  # xy
                    wh = (wh * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, conf), 4)
                # z是一个teensor list,三个元素,分别是[1,19200,25] [1, 4800, 25], [1, 1200, 25]
                z.append(y.view(bs, self.na * nx * ny, self.no))

        return x if self.training else (torch.cat(z, 1), ) if self.export else (torch.cat(z, 1), x)

    
    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
        """
        生成网格和锚框的张量,网格形状由ny和nx居多,锚框形状由self.anchors[i]和self.stride[i]决定
        :params nx: 网格宽度
        :params ny: 网格高度 
        :params i: 锚框索引
        :params torch_1_10:判断torch版本是否大于1.10.0
        :return grid:
        :return anchor_grid:
        """
        d = self.anchors[i].device # 锚框的device
        t = self.anchors[i].dtype # 锚框的数据类型
        # self.na 每个feature map的anchor的个数
        shape = 1, self.na, ny, nx, 2  # grid shape
        # y是长度为ny的张量,x是长度为nx的张量,y和x分别表示网格的纵坐标和横坐标
        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
        # 如果torch_1_10为True,表示torch版本大于等于1.10.0,代码使用torch.meshgrid函数生成网格坐标,采用'ij'索引方式。
        # 否则,代码使用torch.meshgrid函数生成网格坐标,采用默认的索引方式
        yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)  # torch>=0.7 compatibility
        # [ny, nx, 2] to [1, self.na, ny, nx, 2] - 0.5 # 以此得到网格的偏移量
        grid = torch.stack((xv, yv), 2).expand(shape) - 0.5  # add grid offset, i.e. y = 2.0 * x - 0.5
        anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
        return grid, anchor_grid

3、DetectionModel类继承自BaseModel类,用于构建模型,使用时定义了一个全局变量model指向这个类,在其他文件中使用时直接调用model。

class BaseModel(nn.Module):
    # YOLOv5 base model
    def forward(self, x, profile=False, visualize=False):
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_once(self, x, profile=False, visualize=False):
        """
        :params x: 输入图像
        :params profile: True   可以做一些性能评估
        :params visualize: True 可以做一些特征可视化
        """
        # y:  存放着self.save = True 的每一层的输出,因为后边层结构concat要用到
        # dt:在profile中做性能评估时使用
        y, dt = [], []  # outputs
        # 前向推理每一层结构 
        # m.i = index m.f = from m.type = 类名 m.mp = number of parms 
        for m in self.model:
            
            # 4个concat操作和1个detect操作
            if m.f != -1:  # if not from previous layer
                # concat: m.f=[-1,6] x就有两个元素,一个是上一层的输出,另一个是index层的输出
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            
            # 打印日志信息,FLOPS、time
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            # 存放着self.save的每一层的输出
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _profile_one_layer(self, m, x, dt):
        c = m == self.model[-1]  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x, ), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        """
            用在detect.py和val.py中
            fuse model conv2d() + batch norm
        """
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self


class DetectionModel(BaseModel):
    # YOLOv5 detection model
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        """
        params cfg: 配置文件
        params ch: input channel
        param nc: number of classes
        params anchor: 一般是none
        """
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        
        # 调用parse_model 创建网络模型
        # self.model 初始化的整个网络结构
        # self.save 所有层结构中from不等于-1的序号
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        # default class names ['0', '1', '2', '3', '4'.......]
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        # 获取Detect 模块的stride(相对于输入图像的下采样率)和anchors在当前Detect输出的feature map的尺度
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, Segment)):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
            # 计算三个feature map的下采样率
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            # 检查anchor顺序是否与stride顺序是否一致
            check_anchor_order(m)
            # 求出相对于当前feature map的anchor大小     [10,13]/8=[1.25,1.625]
            m.anchors /= m.stride.view(-1, 1, 1)
            self.stride = m.stride
            self._initialize_biases()  # only run once
        # Init weights, biases
        initialize_weights(self) # 初始化模型权重
        self.info() 
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        # 是否在测试时使用Test Time Augmentation(TTA)
        if augment:
            return self._forward_augment(x)  # augmented inference, None
        # 默认执行前向推理
        # single-scale inference, train 
        # _forward_once在BaseModel中实现
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_augment(self, x):
        """Test Time Augmentation(TTA) """
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud上下, 3-lr左右)
        y = []  # outputs
        for si, fi in zip(s, f):
            # scale_img缩放图片尺寸
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            # descale
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y

    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

使用语句

Model = DetectionModel  # retain YOLOv5 'Model' class for backwards compatibility

yolov5是一个目标检测算法,yolo.py是其中的一个核心文件,主要实现了模型的构建和训练。下面是yolo.py代码详解: 1. 导入必要的库和模块 ```python import torch import torch.nn as nn import numpy as np from collections import OrderedDict from utils.general import anchors, autopad, scale_img, check_anchor_order, check_file, check_img_size, \ check_requirements, non_max_suppression, xyxy2xywh, xywh2xyxy, plot_one_box from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info from models.common import Conv, DWConv ``` 2. 定义YOLOv5模型 ```python class YOLOv5(nn.Module): def __init__(self, nc=80, anchors=(), ch=(), inference=False): # model, input channels, number of classes super(YOLOv5, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors per layer self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inference = inference # inference flag ``` 3. 定义前向传播函数 ```python def forward(self, x): self.img_size = x.shape[-2:] # store image size x = self.forward_backbone(x) # backbone z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.inference == 'tflite': z.append(x[i].detach().cpu()) # inference tflite else: io = x[i].sigmoid() io[..., 4:] = io[..., 4:] * io[..., 4:].mean(1, keepdim=True) * self.nc # sigmoid obj,class scores bxy = io[..., :2].sigmoid() * 2. - 0.5 + self.grid[i] # xy bwh = io[..., 2:4].exp() * self.anchor_grid[i] # wh xywh = torch.cat((bxy, bwh), -1).view(bs, -1, 4) * self.stride[i] # xywh (center+offset) relative to image size z.append(xywh.view(bs, -1, self.no), ) # xywhn return x if self.training else (torch.cat(z, 1), x) ``` 4. 定义后向传播函数 ```python def forward_backbone(self, x): x = self.conv1(x) x = self.bn1(x) x = self.act1(x) x = self.pool1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) x = self.layer6(x) x = self.layer7(x) x = self.layer8(x) x = self.layer9(x) return x ``` 以上就是yolo.py代码详解,其中包括了YOLOv5模型的定义和前向传播函数的实现。相关问题如下: 相关问题: 1. YOLOv5模型的输入和输出是什么? 2. YOLOv5模型的训练过程是怎样的? 3. YOLOv5模型中的anchors是什么?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值