【机器学习】聚类算法、社区发现

目录

前言

聚类和社区发现

社区发现

聚类算法

聚类-评估指标

社区发现-模块度


前言

最近方向是团案挖掘,关于聚类算法和社区发现,其实之前不怎么了解,最近得补补了。

聚类和社区发现

首先要先明白这两者的差别。

[参考地址]

社团检测通常是指将网络中联系紧密的部分找出来,这些部分就称之为社团,那么也可以认为社团内部联系稠密,而社团之间联系稀疏 。显而易见,其中有一个非常重要的点,稠密是如何定义的。不管现在想到的定义是什么,但都包含顶点,边,度,或许还有路径这些字眼,它们有一个共同的特征–网络的结构。所以,社团检测侧重于找到网络中联系紧密的部分,而经常忽略节点的属性(attributes)。

聚类,顾名思义是将属于同一类的目标聚在一起,通常在聚类之前我们是不知道目标有哪些类型,这也是一种典型的无监督学习方法。那么现在来想想我们熟知的聚类方法:k-means,层次聚类等。其中,最核心的一个部分是计算两个目标之间的距离(或者称为相似度),距离近则它俩是一类,距离远,那就自成一派,或者去找其它距离近的。当然,距离近只是其中一种方法,还有距离远或者怎么样,就看自己的判断。判断标准不是讨论的重点,重点是如何计算距离。欧式距离,曼哈顿距离,余弦相似度等,都是直接用目标特征构成的向量来计算的,没有考虑目标的边,度。所以,聚类侧重于找到一堆属性相似的目标,从而忽略了目标与目标之间的联系。

两者之间的关系已经很清楚啦, 社团检测和聚类存在区别,但是呢,两者又是可以结合起来的。比如,我们现在有一个网络,只知道顶点和边的情况,顶点的属性是未知的。那么在做社团检测的时候,可以将顶点与顶点之间的关系构成一个邻接矩阵,通过一系列变化或者就这个邻接矩阵而言,将每个行看作一个属性,每个列看作目标,就可以很轻松的转为聚类,用聚类的方法求解。当邻接矩阵高维时,还可以先做降维处理。所以,两者并没有完全独立,只是考虑的角度不同,可以结合使用。现在社交网络方向有一个很热门的就是用attributes来辅助进行社团检测,是对传统的社团检测和聚类方法的一种改进,两者优势互补。
 

社区发现

  • LPA(Label Propagation Algorithm)

LPA算法的稳定性不是很好,但优点是可扩展性强,时间复杂度接近线性,且可以控制迭代次数来划分节点类别,不需要预先给定社区数量,适合处理大规模复杂网络。LPA的计算步骤也十分简单:

第一步:为所

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值