矩阵分析——线性空间

1.线性空间

V \rm V V是一个非空集合, F \rm F F是一个数域,在集合 V \rm V V的元素之间定义了加法运算和数乘运算,并且满足加法和数乘运算的封闭性。对于 V \rm V V中任意连个元素 α \alpha α β \beta β,加法运算满足下面四条法则:

  1. (交换律) α + β = β + α \alpha +\beta=\beta +\alpha α+β=β+α
  2. (结合律) α + ( β + ξ ) = ( α + β ) + ξ \alpha+(\beta+\xi)=(\alpha+\beta)+\xi α+(β+ξ)=(α+β)+ξ
  3. (零元素)在 V \rm V V中有一个元素0(称作零元素),对于 V \rm V V中任意元素 α \alpha α都有 α + 0 = α \alpha+0=\alpha α+0=α
  4. (负元素)对于 V \rm V V中每一个元素 α \alpha α,都有 V \rm V V中的元素 β \beta β,使得 α + β = 0 \alpha +\beta=0 α+β=0

并且数乘运算满足一下四条运算法则:
  1. α = 1 ⋅ α \alpha=1\cdot\alpha α=1α
  2. k ( l α ) = ( k l ) α k(l\alpha)=(kl)\alpha k(lα)=(kl)α
  3. ( k + l ) α = k α + l α (k+l)\alpha=k\alpha+l\alpha (k+l)α=kα+lα
  4. k ( α + β ) = k α + k β k(\alpha+\beta)=k\alpha+k\beta k(α+β)=kα+kβ
满足以上这些条件的集合 V \rm V V称为数域 F \rm F F上的线性空间

2.基与坐标变换

2.1 基

设数域 F \rm F F上的线性空间 V V V中有n 个线性无关向量 α 1 , α 2 , ⋯   , α n , \alpha_1,\alpha_2,\cdots,\alpha_n, α1,α2,,αn而且 V \rm V V中任何一个向量 α \alpha α都可以 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn表示为:
α = k 1 α 1 + k 2 α 2 + ⋯ + k n α n \alpha=k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n α=k1α1+k2α2++knαn
则称 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn V \rm V V的一个基, ( k 1 , k 2 , ⋯   , k n ) T (k_1,k_2,\cdots,k_n)^{T} (k1,k2,,kn)T α \alpha α在基 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn下的坐标。这是称 V \rm V V为n维线性空间,并记 d i m V = n dimV=n dimV=n.

2.2 基变换与坐标变换

非零线性空间的基是不唯一的,一个向量在不同的基下的坐标也是不同的。设 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn β 1 , β 2 , ⋯   , β n \beta_1,\beta_2,\cdots,\beta_n β1,β2,,βn V V V中的两组基,他们的关系是:
β i = a 1 i α 1 + a 2 i α 2 + ⋯ + a n i α n = ( α 1 , α 2 , ⋯   , α n ) ( a 1 i a 2 i ⋮ a n i ) \beta_i=a_{1i}\alpha_1+a_{2i}\alpha_2+\cdots+a_{ni}\alpha_n =(\alpha_1,\alpha_2,\cdots,\alpha_n) \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{pmatrix} βi=a1iα1+a2iα2++aniαn=(α1,α2,,αn)a1ia2iani
可以用矩阵表示
( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α n ) [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] (\beta_1,\beta_2,\cdots,\beta_n)=(\alpha_1,\alpha_2,\cdots,\alpha_n) \begin{bmatrix} a_{11} & a_{12} & \cdots &a_{1n}\\ a_{21} & a_{22} & \cdots &a_{2n}\\ \vdots & \vdots & &\vdots\\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{bmatrix} (β1,β2,,βn)=(α1,α2,,αn)a11a21an1a12a22an2a1na2nann
记以上的n阶方阵为 P P P,称其为由基 α 1 , α 2 , ⋯   , α n \alpha_1,\alpha_2,\cdots,\alpha_n α1,α2,,αn β 1 , β 2 , ⋯   , β n \beta_1,\beta_2,\cdots,\beta_n β1,β2,,βn的过渡矩阵。
P = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ] P= \begin{bmatrix} a_{11} & a_{12} & \cdots &a_{1n}\\ a_{21} & a_{22} & \cdots &a_{2n}\\ \vdots & \vdots & &\vdots\\ a_{n1} & a_{n2} & \cdots &a_{nn} \end{bmatrix} P=a11a21an1a12a22an2a1na2nann
注:过渡矩阵 P P P是可逆的。

坐标变换

V V V中任意一个向量 ξ \xi ξ在基 ( α 1 , α 2 , ⋯   , α n ) (\alpha_1,\alpha_2,\cdots,\alpha_n) (α1,α2,,αn) ( β 1 , β 2 , ⋯   , β n ) (\beta_1,\beta_2,\cdots,\beta_n) (β1,β2,,βn)下的坐标分别为 ( x 1 , x 2 , ⋯   , x n ) T (x_1,x_2,\cdots,x_n)^{T} (x1,x2,,xn)T ( y 1 , y 2 , ⋯   , y n ) T (y_1,y_2,\cdots,y_n)^{T} (y1,y2,,yn)T
ξ = ( α 1 , α 2 , ⋯   , α n ) ( x 1 x 2 ⋯ x n ) ξ = ( β 1 , β 2 , ⋯   , β n ) ( y 1 y 2 ⋯ y n ) \xi=(\alpha_1,\alpha_2,\cdots,\alpha_n) \begin{pmatrix} x_1\\ x_2 \\ \cdots\\ x_n \end{pmatrix} \quad \xi=(\beta_1,\beta_2,\cdots,\beta_n) \begin{pmatrix} y_1\\ y_2 \\ \cdots\\ y_n \end{pmatrix} ξ=(α1,α2,,αn)x1x2xnξ=(β1,β2,,βn)y1y2yn

( x 1 x 2 ⋯ x n ) = P ( y 1 y 2 ⋯ y n ) \begin{pmatrix} x_1\\ x_2 \\ \cdots\\ x_n \end{pmatrix} = P \begin{pmatrix} y_1\\ y_2 \\ \cdots\\ y_n \end{pmatrix} x1x2xn=Py1y2yn
或者
( y 1 y 2 ⋯ y n ) = P − 1 ( x 1 x 2 ⋯ x n ) \begin{pmatrix} y_1\\ y_2 \\ \cdots\\ y_n \end{pmatrix} =P^{-1} \begin{pmatrix} x_1\\ x_2 \\ \cdots\\ x_n \end{pmatrix} y1y2yn=P1x1x2xn

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值