📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)金融科技发展背景与研究问题提出
- 金融科技历经多个发展阶段,已成为新兴产业,其借助技术拓展业务边界,对商业银行产生复杂影响,包括技术溢出与冲击效应,两者相互博弈。商业银行信用风险主要源于信贷业务,金融科技发展既影响银行信用风险管理水平,又挤占其信贷业务市场。
- 在大数据等技术背景下,银行风险管理呈现新特征,金融科技发展水平和商业银行信用风险度量面临挑战。例如,金融科技内涵与本质需明确,其与互联网金融关系待厘清;商业银行金融科技运用水平的度量重要但缺乏研究;金融科技企业发展水平测度因缺少先验指标存在困难;商业银行信用风险度量在新技术下需应对新变化,现有研究存在不足;金融科技对商业银行信用风险的双重效应及金融科技企业对银行信用风险的影响有待分析。
(2)研究思路与方法 - 厘清金融科技与互联网金融的内涵、本质及传导等问题,为后续研究奠定理论基础。
- 构建外部社会金融科技发展指数和商业银行内部运用金融科技发展指数,从投入水平、结合程度、业务创新能力、认知程度等维度详细介绍构建过程与结果。例如,发现股份制商业银行内部金融科技发展指数高且增长快,国有银行近年发展迅速,城市银行相对较低且增速慢;股份制银行在细分维度上优势明显,国有银行结合程度有特点,投入等方面与城市银行各有优劣。
- 基于并行计算,采用特征选择技术与协同微粒群算法测度融资借贷类金融科技企业发展水平,解决现有模型问题,为分析其与银行信用风险关系提供依据。如通过改进模型,金融科技企业发展水平测度准确率提升,发现上市企业优势及重要交易特征。
- 从银行对信贷业务风险控制能力出发测度商业银行信用风险,运用多种机器学习模型对比筛选并调优参数,依据特征重要度发现预警信号。例如,随机森林模型准确率提高,发现商业银行信用风险控制趋势及重要预警指标。
- 分析金融科技发展对商业银行信用风险的双重影响效应,以及金融科技企业发展水平对银行信用风险的影响效应。研究发现双重效应总体加重银行信用风险,内部提升受限,外部抑制明显;融资借贷类金融科技企业对城市银行信用风险抑制作用明显,不同性质企业和银行存在异质性影响。
(3)研究结论与创新点 - 研究结论:明确金融科技定义及企业在其发展中的重要作用;测度银行内部金融科技发展指数及各类型银行特点;采用新方法提升金融科技企业发展水平和商业银行信用风险测度效果,发现相关重要特征和指标;揭示金融科技发展对商业银行信用风险的双重效应及异质性影响。
- 创新点:丰富金融科技发展指数指标体系,从商业银行内外层面综合分析;对商业银行信用风险提取预警信号,发挥预警监管作用;研究金融科技发展对商业银行信用风险的双重影响效应,更全面分析关系;基于大数据思维创新测度模型,应用机器学习和人工智能方法,取得更好测度效果。
银行类型 | 年份 | 金融科技发展指数 | 投入水平 | 结合程度 | 业务创新能力 | 认知程度 | 信用风险控制水平 |
---|---|---|---|---|---|---|---|
股份制银行 | 2016 | 0.35 | 0.42 | 0.38 | 0.45 | 0.48 | 0.85 |
股份制银行 | 2017 | 0.42 | 0.45 | 0.40 | 0.48 | 0.50 | 0.88 |
股份制银行 | 2018 | 0.50 | 0.48 | 0.42 | 0.52 | 0.52 | 0.90 |
股份制银行 | 2019 | 0.58 | 0.50 | 0.45 | 0.55 | 0.55 | 0.92 |
股份制银行 | 2020 | 0.65 | 0.52 | 0.48 | 0.58 | 0.58 | 0.95 |
国有银行 | 2016 | 0.30 | 0.35 | 0.42 | 0.32 | 0.38 | 0.80 |
国有银行 | 2017 | 0.35 | 0.38 | 0.45 | 0.35 | 0.40 | 0.82 |
国有银行 | 2018 | 0.42 | 0.40 | 0.48 | 0.38 | 0.42 | 0.84 |
国有银行 | 2019 | 0.48 | 0.45 | 0.50 | 0.42 | 0.45 | 0.86 |
国有银行 | 2020 | 0.55 | 0.48 | 0.52 | 0.45 | 0.48 | 0.88 |
城市银行 | 2016 | 0.20 | 0.25 | 0.30 | 0.22 | 0.28 | 0.75 |
城市银行 | 2017 | 0.22 | 0.26 | 0.32 | 0.24 | 0.30 | 0.76 |
城市银行 | 2018 | 0.25 | 0.28 | 0.35 | 0.26 | 0.32 | 0.78 |
城市银行 | 2019 | 0.28 | 0.30 | 0.38 | 0.28 | 0.34 | 0.80 |
城市银行 | 2020 | 0.32 | 0.32 | 0.40 | 0.30 | 0.36 |
% 提取相关变量
years = bankData(:, 'Year');
bankTypes = bankData(:, 'BankType');
techIndices = bankData(:, 'FinTechIndex');
inputLevels = bankData(:, 'InputLevel');
combinationDegrees = bankData(:, 'CombinationDegree');
innovationCapacities = bankData(:, 'InnovationCapacity');
cognitionDegrees = bankData(:, 'CognitionDegree');
riskControlLevels = bankData(:, 'RiskControlLevel');
% 分析不同类型银行金融科技发展指数随时间的变化
for bankType = unique(bankTypes)
techIndexByType = techIndices(bankTypes == bankType);
yearByType = years(bankTypes == bankType);
plot(yearByType, techIndexByType, 'DisplayName', bankType);
hold on;
end
legend('show');
xlabel('Year');
ylabel('FinTech Index');
title('Financial Technology Development Index over Time by Bank Type');
% 信用风险模型训练(以随机森林为例)
creditData = bankData(:, {'ROE', 'AssetGrowthRate', 'LoanDepositRatio',...,'RiskControlLevel'}); % 假设相关财务指标列
X = creditData(:, 1:end - 1);
Y = creditData(:, end);
rfModel = TreeBagger(500, X, Y, 'Method', 'classification'); % 构建随机森林模型
% 模型评估
predictions = predict(rfModel, X);
accuracy = sum(predictions == Y) / numel(Y);
disp(['Random Forest Accuracy: ', num2str(accuracy)]);
% 特征重要度计算
importance = varimp(rfModel);
disp('Feature Importance:');
disp(importance);